227 research outputs found

    Communication in cancer genetic counselling: does it reflect counselees' previsit needs and preferences?

    Get PDF
    This study sought to describe counsellor–counselee interaction during initial cancer genetic counselling consultations and to examine whether the communication reflects counselees' previsit needs. A total of 130 consecutive counselees, referred mainly for breast or colon cancer, completed a questionnaire before their first appointment at a genetic clinic. Their visit was videotaped. Counselee and counsellor verbal communications were analysed and initiative to discuss 11 genetics-specific conversational topics was assessed. The content of the visit appeared relatively standard. Overall, counselees had a stronger psychosocial focus than counsellors. Counsellors directed the communication more and initiated the discussion of most of the topics assessed. Counselees did not appear to communicate readily in a manner that reflected their previsit needs. Counsellors provided more psychosocial information to counselees in higher need for emotional support, yet did not enquire more about counselees' specific concerns. New counselees may be helped by receiving more information on the counselling procedure prior to their visit, and may be advised to prepare the visit more thoroughly so as to help them verbalise more their queries during the visit

    Development of a modified floristic quality index as a rapid habitat assessment method in the northern Everglades

    Get PDF
    Floristic quality assessments (FQA) using floristic quality indices (FQIs) are useful tools for assessing and comparing vegetation communities and related habitat condition. However, intensive vegetation surveys requiring significant time and technical expertise are necessary, which limits the use of FQIs in environmental monitoring programs. This study modified standard FQI methods to develop a rapid assessment method for characterizing and modeling change in wetland habitat condition in the northern Everglades. Method modifications include limiting vegetation surveys to a subset of taxa selected as indicators of impact and eliminating richness and/or abundance factors from the equation. These modifications reduce the amount of time required to complete surveys and minimizes misidentification of species, which can skew results. The habitat characterization and assessment tool (HCAT) developed here is a FQA that uses a modified FQI to detect and model changes in habitat condition based on vegetation communities, characterize levels of impact as high, moderate, or low, provide predictive capabilities for assessing natural resource management or water management operation alternatives, and uniquely links a FQI with readily accessible environmental data. For application in the northern Everglades, surface water phosphorus concentrations, specific conductivity, distance from canal, and days since dry (5-year average) explained 67% of the variability in the dataset with \u3e 99.9% confidence. The HCAT approach can be used to monitor, assess, and evaluate habitats with the objective of informing management decisions (e.g., as a screening tool) to maximize conservation and restoration of protected areas and is transferable to other wetlands with additional modification

    Activation of Hypoxia Inducible Factor 1 Is a General Phenomenon in Infections with Human Pathogens

    Get PDF
    Background: Hypoxia inducible factor (HIF)-1 is the key transcriptional factor involved in the adaptation process of cells and organisms to hypoxia. Recent findings suggest that HIF-1 plays also a crucial role in inflammatory and infectious diseases. Methodology/Principal Findings: Using patient skin biopsies, cell culture and murine infection models, HIF-1 activation was determined by immunohistochemistry, immunoblotting and reporter gene assays and was linked to cellular oxygen consumption. The course of a S. aureus peritonitis was determined upon pharmacological HIF-1 inhibition. Activation of HIF-1 was detectable (i) in all ex vivo in biopsies of patients suffering from skin infections, (ii) in vitro using cell culture infection models and (iii) in vivo using murine intravenous and peritoneal S. aureus infection models. HIF-1 activation by human pathogens was induced by oxygen-dependent mechanisms. Small colony variants (SCVs) of S. aureus known to cause chronic infections did not result in cellular hypoxia nor in HIF-1 activation. Pharmaceutical inhibition of HIF-1 activation resulted in increased survival rates of mice suffering from a S. aureus peritonitis. Conclusions/Significance: Activation of HIF-1 is a general phenomenon in infections with human pathogenic bacteria, viruses, fungi and protozoa. HIF-1-regulated pathways might be an attractive target to modulate the course of life-threatening infections

    Soil Respiration in Relation to Photosynthesis of Quercus mongolica Trees at Elevated CO2

    Get PDF
    Knowledge of soil respiration and photosynthesis under elevated CO2 is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO2-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO2 (ECβ€Š=β€Š500 Β΅mol molβˆ’1) and ambient CO2 (ACβ€Š=β€Š370 Β΅mol molβˆ’1) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons. EC significantly stimulated the daytime soil respiration by 24.5% (322.4 at EC vs. 259.0 mg CO2 mβˆ’2 hrβˆ’1 at AC) in 2007 and 21.0% (281.2 at EC vs. 232.6 mg CO2 mβˆ’2 hrβˆ’1 at AC) in 2008, and increased the daytime CO2 assimilation by 28.8% (624.1 at EC vs. 484.6 mg CO2 mβˆ’2 hrβˆ’1 at AC) across the two growing seasons. The temporal variation in soil respiration was positively correlated with the aboveground photosynthesis, soil temperature, and soil water content at both EC and AC. EC did not affect the temperature sensitivity of soil respiration. The increased daytime soil respiration at EC resulted mainly from the increased aboveground photosynthesis. The present study indicates that increases in CO2 fixation of plants in a CO2-rich world will rapidly return to the atmosphere by increased soil respiration

    Dual isotope analyses indicate efficient processing of atmospheric nitrate by forested watersheds in the northeastern U.S.

    Get PDF
    Author Posting. Β© Springer, 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 90 (2008): 15-27, doi:10.1007/s10533-008-9227-2.Nitrogen from atmospheric deposition serves as the dominant source of new nitrogen to forested ecosystems in the northeastern U.S.. By combining isotopic data obtained using the denitrifier method, with chemistry and hydrology measurements we determined the relative importance of sources and control mechanisms on nitrate (NO3-) export from five forested watersheds in the Connecticut River watershed. Microbially produced NO3- was the dominant source (82-100%) of NO3- to the sampled streams as indicated by the Ξ΄15N and Ξ΄18O of NO3-. Seasonal variations in the Ξ΄18O-NO3- in streamwater are controlled by shifting hydrology and temperature affects on biotic processing, resulting in a relative increase in unprocessed NO3- export during winter months. Mass balance estimates find that the unprocessed atmospherically derived NO3- stream flux represents less than 3% of the atmospherically delivered wet NO3- flux to the region. This suggests that despite chronically elevated nitrogen deposition these forests are not nitrogen saturated and are retaining, removing, and reprocessing the vast majority of NO3- delivered to them throughout the year. These results confirm previous work within Northeastern U.S. forests and extend observations to watersheds not dominated by a snow-melt driven hydrology. In contrast to previous work, unprocessed atmospherically derived NO3- export is associated with the period of high recharge and low biotic activity as opposed to spring snowmelt and other large runoff events.This work was funded by an EPA STAR Fellowship (FP-91637501-1) and a grant from QLF/The Sound Conservancy to RTB

    CD155/PVR plays a key role in cell motility during tumor cell invasion and migration

    Get PDF
    BACKGROUND: Invasion is an important early step of cancer metastasis that is not well understood. Developing therapeutics to limit metastasis requires the identification and validation of candidate proteins necessary for invasion and migration. METHODS: We developed a functional proteomic screen to identify mediators of tumor cell invasion. This screen couples Fluorophore Assisted Light Inactivation (FALI) to a scFv antibody library to systematically inactivate surface proteins expressed by human fibrosarcoma cells followed by a high-throughput assessment of transwell invasion. RESULTS: Using this screen, we have identified CD155 (the poliovirus receptor) as a mediator of tumor cell invasion through its role in migration. Knockdown of CD155 by FALI or by RNAi resulted in a significant decrease in transwell migration of HT1080 fibrosarcoma cells towards a serum chemoattractant. CD155 was found to be highly expressed in multiple cancer cell lines and primary tumors including glioblastoma (GBM). Knockdown of CD155 also decreased migration of U87MG GBM cells. CD155 is recruited to the leading edge of migrating cells where it colocalizes with actin and Ξ±v-integrin, known mediators of motility and adhesion. Knockdown of CD155 also altered cellular morphology, resulting in cells that were larger and more elongated than controls when plated on a Matrigel substrate. CONCLUSION: These results implicate a role for CD155 in mediating tumor cell invasion and migration and suggest that CD155 may contribute to tumorigenesis

    Codon Size Reduction as the Origin of the Triplet Genetic Code

    Get PDF
    The genetic code appears to be optimized in its robustness to missense errors and frameshift errors. In addition, the genetic code is near-optimal in terms of its ability to carry information in addition to the sequences of encoded proteins. As evolution has no foresight, optimality of the modern genetic code suggests that it evolved from less optimal code variants. The length of codons in the genetic code is also optimal, as three is the minimal nucleotide combination that can encode the twenty standard amino acids. The apparent impossibility of transitions between codon sizes in a discontinuous manner during evolution has resulted in an unbending view that the genetic code was always triplet. Yet, recent experimental evidence on quadruplet decoding, as well as the discovery of organisms with ambiguous and dual decoding, suggest that the possibility of the evolution of triplet decoding from living systems with non-triplet decoding merits reconsideration and further exploration. To explore this possibility we designed a mathematical model of the evolution of primitive digital coding systems which can decode nucleotide sequences into protein sequences. These coding systems can evolve their nucleotide sequences via genetic events of Darwinian evolution, such as point-mutations. The replication rates of such coding systems depend on the accuracy of the generated protein sequences. Computer simulations based on our model show that decoding systems with codons of length greater than three spontaneously evolve into predominantly triplet decoding systems. Our findings suggest a plausible scenario for the evolution of the triplet genetic code in a continuous manner. This scenario suggests an explanation of how protein synthesis could be accomplished by means of long RNA-RNA interactions prior to the emergence of the complex decoding machinery, such as the ribosome, that is required for stabilization and discrimination of otherwise weak triplet codon-anticodon interactions

    Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed

    Get PDF
    Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~50m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85%, 10% and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0-16Β΅M h-1 and was highest in the top 30cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations
    • …
    corecore