1,627 research outputs found

    Damage index for stone monuments

    Get PDF
    Precise diagnosis is required for characterisation, interpretation, rating and prediction of the weathering damages at stone monuments and is vital for remedy of stone damages and sustainable monument preservation. Quantitative rating of damages represents an important scientific contribution to reliable damage diagnosis at stone monuments. Damage indices are introduced as new tool for scientific quantification and rating of stone damages. Application of damage indices improves stone damage diagnosis and is very suitable for evaluation and certification of preservation measures and for long-term survey and maintenance of stone monuments. Importance and use of damage indices are presented for monuments in Germany, Malta, Jordan, Egypt and Brazil.peer-reviewe

    MODELOWANIE STANÓW PRZEJŚCIOWYCH MASZYN PRĄDU PRZEMIENNEGO Z UWZGLĘDNIENIEM EFEKTÓW DRUGIEGO RZĘDU

    Get PDF
    In this paper, the transient simulation of AC machines considering spatial field harmonics and current displacement in rotor bars is examined. The first point of discussion is the sufficient order of the equivalent circuit of the current displacement model for its accurate co-simulation with the higher spatial field harmonics. In the second place, the problem of inversion of the inductance matrix considering the flux linkage through higher spatial harmonics is studied.W artykule przeanalizowano symulację stanów przejściowych maszyn prądu przemiennego z uwzględnieniem harmonicznych pola przestrzennego i przesunięcia prądu w prętach wirnika. Po pierwsze przeanalizowano jaki jest wystarczający rząd modelu równoważnego obwodu przesunięcia prądu dla jego dokładnej symulacji wraz z wyższymi harmonicznymi pola przestrzennego. Po drugie, badany jest problem inwersji macierzy induktancji z uwzględnieniem sprzężenia strumienia przez wyższe harmoniczne przestrzenne

    Synthesis of mechanically strong waterborne poly(urethane-urea)s capable of self-healing at elevated temperatures

    Get PDF
    Although various chemistries have been introduced into polyurethanes in order to obtain self-healing abilities, implementing these materials in applications requiring high strength is challenging as strong materials imply a limited molecular motion, but without movement of polymer chains self-healing is not possible. Here, waterborne poly(urethane-urea)s (PU(U)s) based on aromatic disulfide compounds are developed which balance these contradictory requirements by presenting good mechanical properties at room temperature, while showing the mobility necessary for healing when moderately heated. The influence of hard monomers on the stability and mobility of the materials is investigated by scratch closure, cut healing and rheological measurements, so that the limits of the readily available aromatic disulfide compounds, bis(4-aminophenyl)- and bis(4-hydroxyphenyl)disulfide, can be determined. Subsequently, a modified aromatic disulfide compound, bis[4-(3'-hydroxypropoxy)phenyl]disulfide, with increased reactivity, solubility and flexibility is synthesized and incorporated into the PU backbone, so that materials with more attractive mechanical properties, reaching ultimate tensile strengths up to 23 MPa, and self-healing abilities at elevated temperatures could be obtained.The European Union’s Horizon 2020 research and innovation programme is accredited for the financial support through Project TRACKWAY-ITN 642514 under the Marie Sklodowska-Curie grant agreement. N.B. acknowledges the financial support obtained through the Post-Doctoral fellowship Juan de la Cierva - Incorporación (IJCI-2016-28442), from the Ministry of Economy and Competitiveness of Spai

    Embedding weak memory models within eager sequentialization

    No full text
    Sequentialization is one of the most promising approaches for the symbolic analysis of concurrent programs. However, existing sequentializations assume sequential consistency, which modern hardware architectures no longer guarantee. In this paper we describe an approach to embed weak memory models within eager sequentializations (a la Lal/Reps). Our approach is based on the separation of intra-thread computations from inter-thread communications by means of a shared memory abstraction (SMA). We give details of SMA implementations for the SC, TSO, and PSO memory models that are based on the idea of individual memory unwindings, and sketch an extension to the Power memory model. We use our approach to implement a new, efficient BMC-based bug finding tool for multi-threaded C programs under SC, TSO, or PSO based on these SMAs, and show experimentally that it is competitive to existing tools

    Separating computation from communication: a design approach for concurrent program verification

    No full text
    We describe an approach to design static analysis and verification tools for concurrent programs that separates intra-thread computation from inter-thread communication by means of a shared memory abstraction (SMA). We formally characterize the concept of thread-asynchronous transition systems that underpins our approach and that allows us to design tools as two independent components, the intra-thread analysis, which can be optimized separately, and the implementation of the SMA itself, which can be exchanged easily (e.g., from the SC to the TSO memory model). We describe the SMA’s API and show that several concurrent verification techniques from the literature can easily be recast in our setting and thus be extended to weak memory models. We give SMA implementations for the SC, TSO, and PSO memory models that are based on the idea of individual memory unwindings. We instantiate our approach by developing a new, efficient BMC-based bug finding tool for multi-threaded C programs under SC, TSO, or PSO based on these SMAs, and show experimentally that it is competitive to existing tools

    Parallel bug-finding in concurrent programs via reduced interleaving instances

    Get PDF
    Concurrency poses a major challenge for program verification, but it can also offer an opportunity to scale when subproblems can be analysed in parallel. We exploit this opportunity here and use a parametrizable code-to-code translation to generate a set of simpler program instances, each capturing a reduced set of the original program’s interleavings. These instances can then be checked independently in parallel. Our approach does not depend on the tool that is chosen for the final analysis, is compatible with weak memory models, and amplifies the effectiveness of existing tools, making them find bugs faster and with fewer resources. We use Lazy-CSeq as an off-the-shelf final verifier to demonstrate that our approach is able, already with a small number of cores, to find bugs in the hardest known concurrency benchmarks in a matter of minutes, whereas other dynamic and static tools fail to do so in hours

    Lazy Sequentialization for TSO and PSO via Shared Memory Abstractions

    No full text
    Lazy sequentialization is one of the most effective approaches for the bounded verification of concurrent programs. Existing tools assume sequential consistency (SC), thus the feasibility of lazy sequentializations for weak memory models (WMMs) remains untested. Here, we describe the first lazy sequentialization approach for the total store order (TSO) and partial store order (PSO) memory models. We replace all shared memory accesses with operations on a shared memory abstraction (SMA), an abstract data type that encapsulates the semantics of the underlying WMM and implements it under the simpler SC model. We give efficient SMA implementations for TSO and PSO that are based on temporal circular doubly-linked lists, a new data structure that allows an efficient simulation of the store buffers. We show experimentally, both on the SV-COMP concurrency benchmarks and a real world instance, that this approach works well in combination with lazy sequentialization on top of bounded model checking

    Kein schlechtes Jahr 2012 im Bauhauptgewerbe

    Full text link

    Variability of dinoflagellates and their associated toxins in relation with environmental drivers in Ambon Bay, eastern Indonesia

    Get PDF
    The aim of the present work was to unravel which environmental drivers govern the dynamics of toxic dinoflagellate abundance as well as their associated paralytic shellfish toxins (PSTs), diarrhetic shellfish toxins (DSTs) and pectenotoxin-2 (PTX2) in Ambon Bay, Eastern Indonesia. Weather, biological and physicochemical parameters were investigated weekly over a 7-month period. Both PSTs and PTX2 were detected at low levels, yet they persisted throughout the research. Meanwhile, DSTs were absent. A strong correlation was found between total particulate PST and Gymnodinium catenatum cell abundance, implying that this species was the main producer of this toxin. PTX2 was positively correlated with Dinophysis miles cell abundance. Vertical mixing, tidal elevation and irradiance attenuation were the main environmental factors that regulated both toxins and cell abundances, while nutrients showed only weak correlations. The present study indicates that dinoflagellate toxins form a potential environmental, economic and health risk in this Eastern Indonesian bay
    • …
    corecore