42 research outputs found

    Emission spectrum of hot HDO in the 380-2190 cm(-1) region

    Get PDF
    Fourier transform emission spectra were recorded using a mixture of H2O and D2O at a temperature of 1500 degreesC. The spectra were recorded in three overlapping sections and cover the wavenumber range 380-2190 cm(-1). A total of 22106 lines were measured, of which 60% are thought to belong to HDO. A total of 6430 FIDO transition,, are assigned, including the first transitions to the (040) vibrational state, with a term value of 5420.042 cm(-1). A total of 1536 new energy levels of HDO belonging to the (000), (010) (020), (030), and (040) stated are presented, significantly extending the degree of rotational excitation compared to previous studies. (C) 2001 Elsevier Science

    Global stratospheric fluorine inventory for 2004-2009 from Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) measurements and SLIMCAT model simulations

    Get PDF
    Fluorine-containing species can be extremely effective atmospheric greenhouse gases. We present fluorine budgets using organic and inorganic species retrieved by the ACE-FTS satellite instrument supplemented with output from the SLIMCAT 3-D chemical transport model. The budgets are calculated between 2004 and 2009 for a number of latitude bands: 70-30° N, 30-00°l N, 00° N-30° S, and 30-70° S. At lower altitudes total fluorine profiles are dominated by the contribution from CFC-12, up to an altitude of 20 km in the extra-tropics and 29 km in the tropics; above these altitudes the profiles are dominated by hydrogen fluoride (HF). Our data show that total fluorine profiles at all locations have a negative slope with altitude, providing evidence that overall fluorine emissions (measured by their F content) have been increasing with time. Total stratospheric fluorine is increasing at a similar rate in the tropics: 32.5 ± 4.9 ppt yr (1.31 ± 0.20% per year) in the Northern Hemisphere (NH) and 29.8 ± 5.3 ppt yr (1.21 ± 0.22% per year) in the Southern Hemisphere (SH). Extra-tropical total stratospheric fluorine is also increasing at a similar rate in both the NH and SH: 28.3 ± 2.7 ppt per year (1.12 ± 0.11% per year) in the NH and 24.3 ± 3.1 ppt per year (0.96 ± 0.12% per year) in the SH. The calculation of radiative efficiency-weighted total fluorine allows the changes in radiative forcing between 2004 and 2009 to be calculated. These results show an increase in radiative forcing of between 0.23 ± 0.11% per year and 0.45 ± 0.11% per year, due to the increase in fluorine-containing species during this time. The decreasing trends in the mixing ratios of halons and chlorofluorocarbons (CFCs), due to their prohibition under the Montreal Protocol, have suppressed an increase in total fluorine caused by increasing mixing ratios of hydrofluorocarbons (HFCs). This has reduced the impact of fluorine-containing species on global warming

    Fifteen Years of HFC-134a Satellite Observations: Comparisons With SLIMCAT Calculations

    Get PDF
    The phase out of anthropogenic ozone-depleting substances such as chlorofluorocarbons under the terms of the Montreal Protocol led to the development and worldwide use of hydrofluorocarbons (HFCs) in refrigeration, air conditioning, and as blowing agents and propellants. Consequently, over recent years, the atmospheric abundances of HFCs have dramatically increased. HFCs are powerful greenhouse gases and are now controlled under the terms of the 2016 Kigali Amendment to the Montreal Protocol. HFC-134a is currently the most abundant HFC in the atmosphere, breaking the 100 ppt barrier in 2018, and can be measured in the Earth's atmosphere by the satellite remote-sensing instrument ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer), which has been measuring since 2004. This work uses the ACE-FTS v4.0 data product to investigate global distributions and trends of HFC-134a. These measurements are compared with a simulation of SLIMCAT, a state-of-the-art three-dimensional chemical transport model, which is constrained by global surface HFC-134a measurements. The agreement between observation and model is good, although in the tropical troposphere ACE-FTS measurements are biased low by up to 10–15 ppt. The overall ACE-FTS global trend of HFC-134a for the altitude range 5.5–24.5 km and 2004–2018 time period is approximately linear with a value of 4.49 ± 0.02 ppt/year, slightly lower than the corresponding SLIMCAT trend of 4.66 ppt/year. Using a simple box model, we also estimate the annual global emissions and burdens of HFC-134a from the model data, indicating that emissions of HFC-134a have increased almost linearly, reaching 236 Gg by 2018

    Infrared absorption spectra of hot ammonia

    Get PDF
    Infrared absorption spectra of NH3 have been obtained at high resolution (0.02 cm−1) at seven temperatures between 296 and 973 K. The spectra were recorded using a Bruker IFS 125 infrared Fourier transform spectrometer in the 2400–5500 cm−1 region and empirical lower state energies have been obtained by comparison of line strengths at different temperatures. Using two reference line lists, quantum number assignments have been made for each temperature for between 1660 and 3020 transitions, with J up to 22. The line lists obtained provide accurate line positions as well as intensities and experimental lower state energies at temperatures relevant for modeling the atmospheres of brown dwarfs and exoplanets

    Analysis of the red and green optical absorption spectrum of gas phase ammonia

    Get PDF
    Room temperature NH 3 absorption spectra recorded at the Kitt Peak National Solar Observatory in 1980 are analyzed. The spectra cover two regions in the visible: 15,200 – 15,700 cm−1 and 17,950 – 18,250 cm−1. These high overtone rotation-vibration spectra are analyzed using both combination differences and variational line lists. Two variational line lists were computed using the TROVE nuclear motion program: one is based on an ab initio potential energy surface (PES) while the other used a semi-empirical PES. Ab initio dipole moment surfaces are used in both cases. 95 energy levels with J=1−7 are determined from analysis of the experimental spectrum in the 5Îœ NH (red) region and 46 for 6Îœ NH (green) region. These levels span four vibrational bands in each of the two regions, associated with stretching overtones

    Molecular astronomy of cool stars and sub-stellar objects

    Full text link
    The optical and infrared spectra of a wide variety of `cool' astronomical objects including the Sun, sunspots, K-, M- and S-type stars, carbon stars, brown dwarfs and extrasolar planets are reviewed. The review provides the necessary astronomical background for chemical physicists to understand and appreciate the unique molecular environments found in astronomy. The calculation of molecular opacities needed to simulate the observed spectral energy distributions is discussed

    Phosgene in the Upper Troposphere and Lower Stratosphere: A Marker for Product Gas Injection Due to Chlorine‐Containing Very Short Lived Substances

    Get PDF
    Phosgene in the atmosphere is produced via the degradation of carbon tetrachloride, methyl chloroform, and a number of chlorine‐containing very short lived substances (VSLS). These VSLS are not regulated by the Montreal Protocol even though they contribute to stratospheric ozone depletion. While observations of VSLS can quantify direct stratospheric source gas injection, observations of phosgene in the upper troposphere/lower stratosphere can be used as a marker of product gas injection of chlorine‐containing VSLS. In this work we report upper troposphere/lower stratosphere measurements of phosgene made by the ACE‐FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) instrument and compare with results from the TOMCAT/SLIMCAT three‐dimensional chemical transport model to constrain phosgene trends over the 2004–2016 period. The 13‐year ACE‐FTS time series provides the first observational evidence for an increase in chlorine product gas injection. In 2016, VSLS accounted for 27% of modeled stratospheric phosgene, up from 20% in the mid‐2000s

    Satellite observations of stratospheric carbonyl fluoride

    Get PDF
    The vast majority of emissions of fluorine-containing molecules are anthropogenic in nature, e.g. chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). These molecules slowly degrade in the atmosphere, leading to the formation of HF, COF2, and COClF, which are the main fluorine-containing species in the stratosphere. Ultimately both COF2 and COClF further degrade to form HF, an almost permanent reservoir of stratospheric fluorine due to its extreme stability. Carbonyl fluoride (COF2) is the second-most abundant stratospheric "inorganic" fluorine reservoir, with main sources being the atmospheric degradation of CFC-12 (CCl2F2), HCFC-22 (CHF2Cl), and CFC-113 (CF2ClCFCl2)

    ExoMol molecular line lists V: The ro-vibrational spectra of NaCl and KCl

    Get PDF
    Accurate rotation-vibration line lists for two molecules, NaCl and KCl, in their ground electronic states are presented. These line lists are suitable for temperatures relevant to exoplanetary atmospheres and cool stars (up to 3000 K). Isotopologues 23^{23}Na35^{35}Cl, 23^{23}Na37^{37}Cl, 39^{39}K35^{35}Cl, 39^{39}K37^{37}Cl, 41^{41}K35^{35}Cl and 41^{41}K37^{37}Cl are considered. Laboratory data was used to refine ab initio potential energy curves in order to compute accurate ro-vibrational energy levels. Einstein A coefficients are generated using newly determined ab initio dipole moment curves calculated using the CCSD(T) method. New Dunham Yij_{ij} constants for KCl are generated by a reanalysis of a published Fourier transform infrared emission spectra. Partition functions plus full line lists of ro-vibration transitions are made available in an electronic form as supplementary data to this article and at www.exomol.com

    IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H2 16O

    Get PDF
    This is the third of a series of articles reporting critically evaluated rotational–vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational–vibrational transitions of the most abundant isotopologue of water, H216O. The latest version of the MARVEL (Measured Active Rotational–Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H216O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H216O containstwo components, an ortho (o) and a para (p) one. For o-H216O and p-H216O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H216O and p-H216O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved
    corecore