70 research outputs found

    An Experimental Histopathological Rating Scale of Sedimentation Stress in the Caribbean Coral Montastraea cavernosa

    Get PDF
    Colonies of Montastraea cavernosa were exposed to daily applications of approx. 200–225 mg cm– 2 sediments, during a four-week period, in order to investigate coral responses to increased sedimentation. Effects were assessed based on the histopathological condition of specimen tissues. Mild stress responses were noted as early as week one, including tissue swelling and polyp retraction, as well as changes in size and appearance of mucous secretory cells. As stress progressed, further inflammation of the mucous secretory cells was observed. Severe effects were observed in weeks 3 and 4, including atrophy of the outer epidermis, increased granularity and debris in gastrodermal cells of the middle and lower polyp region, as well as swelling and granularity of the calicoblastic epithelium. A semiquantitative rating scale was developed to score tissue condition based on the histopathological changes observed in control and treated corals. Although some signs of stress were also present in some control colonies, statistical analyses indicated significant differences in histopathological condition between control and treated corals. Our results confirm previous research that sublethal effects of sedimentation on corals are complex, involving both localized and systemic cell injury. Our results offer insight with regards to the diagnosis of healthy vs. unhealthy condition in reef corals, and provide a framework to survey for cellular reactions to environmental stress in coral reefs

    The Reproductive Seasonality and Gametogenic Cycle of Acropora cervicornis off Broward County, Florida, USA

    Get PDF
    Reproductive characters of the Caribbean reef-building coral Acropora cervicornis were investigated based on histological samples collected from April 2001 through October 2002. Oogenesis commenced in early to mid-October through November and spermatogenesis was initiated from January to March. The onset of gametogenesis was staggered, exhibiting up to approximately a 1-month delay within colonies. In the hermaphroditic polyps, the observed male-to-female gonad ratio was nearly 1:1 and ripe oocytes represented over 70% of the total gonadal volume. Fecundity estimates based on Stage IV ova ranged between 10.4 and 21.8 mm3 per square centimeter per year, comparable to A. cervicornis in Puerto Rico and other broadcasting Indo-Pacific Acropora. Fecundity estimates based on Stage III vitellogenic oocytes indicated statistically significant differences among study sites. Spawning in field conditions was observed in 2001, 2003, and 2004 from 2300 to 2330 h. Gamete release generally occurred synchronously between nights two and seven after the full moon of July or August. However in 2003, multiple, small-scale gamete release episodes occurred over more than one lunar cycle. This coincided with the full moon occurring early in the month of July. While prolific gamete production is reported in this study, low levels of recruitment have been reported for this species. Thus, the highly fragmenting A. cervicornis may rely heavily on asexual reproduction for population maintenance and expansion, and recovery after disturbance may be greatly protracted

    Real-Time Coral Stress Observations Before, During, and After Beach Nourishment Dredging Offshore SE Florida

    Get PDF
    Beach nourishment in Southeast Florida involves dredging sand source borrow areas located between offshore reefs. From May 2005 to February 2006 Broward County, FL. nourished 10.9 km of beach with 1.5 ×106 m3 of sand. As part of a program to monitor potential reef community impacts, a visual stress index was developed from laboratory experiments and histological analyses for three stony coral species (Montastrea cavernosa, Solenastrea bournoni, and Siderastrea siderea). Scoring involved healthy = 0; moderately stressed = 1 (polyp swelling, increased mucus); markedly stressed = 2 (coloration changes, increased mucus secretion, tissue thinning); and severely stressed = 3 (severe swelling/thinning tissue erosion/necrosis). Colonies were scored weekly at sites adjacent to borrow areas and control sites pre-, during, and post-dredging. Permit conditions were established which would suspend dredging based on mean stress index values above 1.5 at 50% of monitored sites adjacent to borrow areas. This condition was never met. However, three hurricanes, passing the region during dredging, contributed to an elevated mean stress level above 1.0. Post-dredging observations documented recovery to pre-dredging stress levels. This program was effectively used to monitor stress on a sensitive marine habitat adjacent to sediment dredging activities

    Oceanic productivity and high-frequency temperature variability—not human habitation—supports calcifier abundance on central Pacific coral reefs

    Get PDF
    Past research has demonstrated how local-scale human impacts—including reduced water quality, overfishing, and eutrophication—adversely affect coral reefs. More recently, global-scale shifts in ocean conditions arising from climate change have been shown to impact coral reefs. Here, we surveyed benthic reef communities at 34 U.S.-affiliated Pacific islands spanning a gradient of oceanic productivity, temperature, and human habitation. We re-evaluated patterns reported for these islands from the early 2000s in which uninhabited reefs were dominated by calcifiers (coral and crustose coralline algae) and thought to be more resilient to global change. Using contemporary data collected nearly two decades later, our analyses indicate this projection was not realized. Calcifiers are no longer the dominant benthic group at uninhabited islands. Calcifier coverage now averages 26.9% ± 3.9 SE on uninhabited islands (compared to 45.18% in the early 2000s). We then asked whether oceanic productivity, past sea surface temperatures (SST), or acute heat stress supersede the impacts of human habitation on benthic cover. Indeed, we found variation in benthic cover was best explained not by human population densities, but by remotely sensed metrics of chlorophyll-a, SST, and island-scale estimates of herbivorous fish biomass. Specifically, higher coral and CCA cover was observed in more productive waters with greater biomass of herbivores, while turf cover increased with daily SST variability and reduced herbivore biomass. Interestingly, coral cover was positively correlated with daily variation in SST but negatively correlated with monthly variation. Surprisingly, metrics of acute heat stress were not correlated with benthic cover. Our results reveal that human habitation is no longer a primary correlate of calcifier cover on central Pacific island reefs, and highlight the addition of oceanic productivity and high-frequency SST variability to the list of factors supporting reef builder abundance

    Hawaiʻi Coral Disease database (HICORDIS):species-specific coral health data from across the Hawaiian archipelago

    Get PDF
    AbstractThe Hawaiʻi Coral Disease database (HICORDIS) houses data on colony-level coral health condition observed across the Hawaiian archipelago, providing information to conduct future analyses on coral reef health in an era of changing environmental conditions. Colonies were identified to the lowest taxonomic classification possible (species or genera), measured and assessed for visual signs of health condition. Data were recorded for 286,071 coral colonies surveyed on 1819 transects at 660 sites between 2005 and 2015. The database contains observations for 60 species from 22 genera with 21 different health conditions. The goals of the HICORDIS database are to: i) provide open access, quality controlled and validated coral health data assembled from disparate surveys conducted across Hawaiʻi; ii) facilitate appropriate crediting of data; and iii) encourage future analyses of coral reef health. In this article, we describe and provide data from the HICORDIS database. The data presented in this paper were used in the research article “Satellite SST-based Coral Disease Outbreak Predictions for the Hawaiian Archipelago” (Caldwell et al., 2016) [1]

    Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human population size across the Indo-Pacific

    Get PDF
    Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment

    Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016)

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Communications Biology 1 (2018): 177, doi:10.1038/s42003-018-0183-7.The oceans are warming and coral reefs are bleaching with increased frequency and severity, fueling concerns for their survival through this century. Yet in the central equatorial Pacific, some of the world’s most productive reefs regularly experience extreme heat associated with El Niño. Here we use skeletal signatures preserved in long-lived corals on Jarvis Island to evaluate the coral community response to multiple successive heatwaves since 1960. By tracking skeletal stress band formation through the 2015-16 El Nino, which killed 95% of Jarvis corals, we validate their utility as proxies of bleaching severity and show that 2015-16 was not the first catastrophic bleaching event on Jarvis. Since 1960, eight severe (>30% bleaching) and two moderate (<30% bleaching) events occurred, each coinciding with El Niño. While the frequency and severity of bleaching on Jarvis did not increase over this time period, 2015–16 was unprecedented in magnitude. The trajectory of recovery of this historically resilient ecosystem will provide critical insights into the potential for coral reef resilience in a warming world.Funding for this study was provided by National Science Foundation awards OCE 1537338, OCE 1605365, and OCE 1031971 to A.L.C., and the Robertson Foundation to A.L.C., National Science Foundation Graduate Research Fellowships to T.M.D. and A.E.A., and a National Defense Science and Engineering Graduate Fellowship to H.E.R

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd &lt; 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays
    corecore