1,765 research outputs found

    Demonstrating Interactive Machine Learning Tools for Rapid Prototyping of Gestural Instruments in the Browser

    Get PDF
    These demonstrations will allow visitors to prototype gestural, interactive musical instruments in the browser. Different browser based synthesisers can be controlled by either a Leap Motion sensor or a Myo armband. The visitor will be able to use an interactive machine learning toolkit to quickly and iteratively explore different interaction possibilities. The demonstrations show how interactive, browser-based machine learning tools can be used to rapidly prototype gestural controllers for audio. These demonstrations showcase RapidLib, a browser based machine learning library developed through the RAPID-MIX project

    CRISPR/Cas9-Mediated Gene Knock-Down in Post-Mitotic Neurons

    Get PDF
    The prokaryotic adaptive immune system CRISPR/Cas9 has recently been adapted for genome editing in eukaryotic cells. This technique allows for sequence-specific induction of double-strand breaks in genomic DNA of individual cells, effectively resulting in knock-out of targeted genes. It thus promises to be an ideal candidate for application in neuroscience where constitutive genetic modifications are frequently either lethal or ineffective due to adaptive changes of the brain. Here we use CRISPR/Cas9 to knock-out Grin1, the gene encoding the obligatory NMDA receptor subunit protein GluN1, in a sparse population of mouse pyramidal neurons. Within this genetically mosaic tissue, manipulated cells lack synaptic current mediated by NMDA-type glutamate receptors consistent with complete knock-out of the targeted gene. Our results show the first proof-of-principle demonstration of CRISPR/Cas9-mediated knock-down in neurons in vivo, where it can be a useful tool to study the function of specific proteins in neuronal circuits

    Leadership emergence in a data-driven model of zebrafish shoals with speed modulation

    Get PDF
    Models of collective animal motion can greatly aid in the design and interpretation of behavioural experiments that seek to unravel, isolate, and manipulate the determinants of leader-follower relationships. Here, we develop an initial model of zebrafish social behaviour, which accounts for both speed and angular velocity regulatory interactions among conspecifics. Using this model, we analyse the macroscopic observables of small shoals influenced by an “informed” agent, showing that leaders which actively modulate their speed with respect to their neighbours can entrain and stabilise collective dynamics of the naïve shoal

    Searching for solutions to the conflict over Europe's oldest forest

    Get PDF
    The Białowieża Forest World Heritage site is one of the last remaining primeval forests in lowland Europe and is a refuge for European Bison (Bison bonasus), the largest land mammal on the continent (Table 1)

    The Science Space of Artificial Intelligence Knowledge Production

    Get PDF
    The present contribution seeks to map the development of Artificial Intelligence (AI) knowledge as indicated through scientific publications. A set of principal keywords is employed in order to identify those publications that are related to AI in the Web of Science and the metadata provided by the database is then utilized to map the evolution of the field across different scales, i.e. the national, country and regional level. This analysis allows for the identification of potential AI “hotspots”, while also establishing places that have been leading in the development of AI knowledge from the onset vis-à-vis those that have managed to catch up over time. In addition, a network that illustrates international collaborative efforts in AI knowledge creation via co-authorships across nations and via the evolution of keywords’ co-occurrence across three decades is illustrated. It is evident that these networks have become denser with time, and that they have changed across regions. The objective of the present analysis is to enhance our understanding about where and how scientific AI knowledge is created, which in turn should encourage and assist future research efforts looking to study AI knowledge and its consequences

    Direct comparison of the abilities of bone marrow mesenchymal versus hematopoietic stem cells to reverse hyperglycemia in diabetic NOD.SCID mice

    Get PDF
    Both bone marrow-derived hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC) improve glycemic control in diabetic mice, but their kinetics and associated changes in pancreatic morphology have not been directly compared. Our goal was to examine the time course of improvements in glucose tolerance and associated changes in β-cell mass and proliferation following transplantation of equivalent numbers of HSC or MSC from the same bone marrow into diabetic non-obese diabetic severe combined immune deficiency (NOD.SCID) mice. We used transgenic mice with a targeted expression of yellow fluorescent protein (YFP) driven by the Vav1 gene promoter to genetically tag HSC and progeny. HSC were separated from bone marrow by fluorescence-activated cell sorting and MSC following cell culture. Equivalent numbers of isolated HSC or MSC were transplanted directly into the pancreas of NOD.SCID mice previously made diabetic with streptozotocin. Glucose tolerance, serum insulin, β-cell mass and β-cell proliferation were examined up to 28 days following transplant. Transplantation with MSC improved glucose tolerance within 7 days and serum insulin levels increased, but with no increase in β-cell mass. Mice transplanted with HSC showed improved glucose tolerance only after 3 weeks associated with increased β-cell proliferation and mass. We conclude that single injections of either MSC or HSC transiently improved glycemic control in diabetic NOD.SCID mice, but with different time courses. However, only HSC infiltrated the islets and were associated with an expanded β-cell mass. This suggests that MSC and HSC have differing mechanisms of action

    Activation of bicyclic nitro-drugs by a novel nitroreductase (NTR2) in <i>Leishmania</i>

    Get PDF
    Drug discovery pipelines for the "neglected diseases" are now heavily populated with nitroheterocyclic compounds. Recently, the bicyclic nitro-compounds (R)-PA-824, DNDI-VL-2098 and delamanid have been identified as potential candidates for the treatment of visceral leishmaniasis. Using a combination of quantitative proteomics and whole genome sequencing of susceptible and drug-resistant parasites we identified a putative NAD(P)H oxidase as the activating nitroreductase (NTR2). Whole genome sequencing revealed that deletion of a single cytosine in the gene for NTR2 that is likely to result in the expression of a non-functional truncated protein. Susceptibility of leishmania was restored by reintroduction of the wild-type gene into the resistant line, which was accompanied by the ability to metabolise these compounds. Overexpression of NTR2 in wild-type parasites rendered cells hyper-sensitive to bicyclic nitro-compounds, but only marginally to the monocyclic nitro-drugs, nifurtimox and fexinidazole sulfone, known to be activated by a mitochondrial oxygen-insensitive nitroreductase (NTR1). Conversely, a double knockout NTR2 null cell line was completely resistant to bicyclic nitro-compounds and only marginally resistant to nifurtimox. Sensitivity was fully restored on expression of NTR2 in the null background. Thus, NTR2 is necessary and sufficient for activation of these bicyclic nitro-drugs. Recombinant NTR2 was capable of reducing bicyclic nitro-compounds in the same rank order as drug sensitivity in vitro. These findings may aid the future development of better, novel anti-leishmanial drugs. Moreover, the discovery of anti-leishmanial nitro-drugs with independent modes of activation and independent mechanisms of resistance alleviates many of the concerns over the continued development of these compound series

    The effects of large-sided soccer training games and pitch size manipulation on time–motion profile, spatial exploration and surface area: Tactical opportunities

    Get PDF
    Analysis of the physical, technical and physiological variations induced through the use of different soccer game formats have been widely discussed. However, the coaching justification for the specific use of certain game formats based on individual and collective spatial awareness is unclear. As a result, the purpose of this study was to analyze 11 versus 11 game formats conducted across two pitch sizes (half-size: 54 m × 68 m vs full-size: 108 m × 68 m) to identify effects of time–motion profiles, individual exploration behavior and collective organization. A total of 10 amateur soccer players from the same team (23.39 ± 3.91 years old) participated in this study. Data position of the players was used to calculate the spatial exploration index and the surface area. Distances covered in different speeds were used to observe the time–motion profile. The full-size pitch dimensions significantly contributed to greater distances covered via running (3.86–5.52 m s−1) and sprinting (>5.52 m s−1). Total distance and number of sprints were also significantly greater in the full-size pitch as compared to the half-size pitch. The surface area covered by the team (half-size pitch: 431.83 m2 vs full-size pitch: 589.14 m2) was significantly larger in the full-size pitch condition. However, the reduced half-size pitch significantly contributed to a greater individual spatial exploration. Results of this study suggest that running and sprinting activities increase when large, full-size pitch dimensions are utilized. Smaller surface area half-size pitch contributes to a better exploration of the pitch measured by spatial exploration index while maintaining adequate surface area coverage by the team. In conclusion, the authors suggest that the small half-size pitch is more appropriate for low-intensity training sessions and field exploration for players in different positions. Alternatively, the large full-size pitch is more appropriate for greater physically demanding training sessions with players focused on positional tactical behavior.info:eu-repo/semantics/publishedVersio

    Laser angle-resolved photoemission as a probe of initial state k(z) dispersion, final-state band gaps, and spin texture of Dirac states in the Bi2Te3 topological insulator

    Get PDF
    We have obtained angle-resolved photoemission spectroscopy (ARPES) spectra from single crystals of the topological insulator material Bi2Te3 using a tunable laser spectrometer. The spectra were collected for 11 different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photointensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. A reasonable overall accord between theory and experiment is used to gain insight into how properties of the initial- and final-state band structures as well as those of the topological surface states and their spin textures are reflected in the laser-ARPES spectra. Our analysis reveals that laser-ARPES is sensitive to both the initial-state kz dispersion and the presence of delicate gaps in the final-state electronic spectrum
    corecore