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Abstract. Models of collective animal motion can greatly aid in the de-
sign and interpretation of behavioural experiments that seek to unravel,
isolate, and manipulate the determinants of leader-follower relation-
ships. Here, we develop an initial model of zebrafish social behaviour,
which accounts for both speed and angular velocity regulatory interac-
tions among conspecifics. Using this model, we analyse the macroscopic
observables of small shoals influenced by an “informed” agent, showing
that leaders which actively modulate their speed with respect to their
neighbours can entrain and stabilise collective dynamics of the näıve
shoal.

1 Introduction

Social fish exhibit a diverse and complex repertoire of emergent behaviours, which are
exemplified by their ability to maintain stable and coherent dynamical states and to
react collectively to stimuli from within the group and their environment [1–8]. The
richness of the spatio-temporal patterns exhibited by fish schools originates from the
continuous interaction between members of the group [9–14]. The evolutionary ad-
vantages of this coordinated, group-level behaviour are often associated with predator
avoidance [15], foraging [11], and migration [16]. In each instance, interaction within
the group enables rapid information sharing so that individual exposure to stimuli
can trigger a collective response which benefits the entire shoal.
Sometimes, the group behaviour resulting from these individual responses is intu-

itive, for example a fish turning away from a predator may elicit a similar response
from its neighbours such that the entire group is spared. Less intuitive is the emer-
gence of distributed sensing in which shoals navigate a complex environment via
a combination of attraction between group members and their individual response
to local cues [17]. In both instances, we see how unequally distributed information,
initially limited to a few individuals, can propagate throughout the group eliciting
an appropriate response. To comprehend the emergence of group-level behaviour,
it is thus important to understand and quantify how information propagates via
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interactions between individuals. This has motivated a recent surge in research with
the specific aim of inferring the precise mechanisms underpinning interactions in an-
imal groups [18,19], and specifically schooling fish [8,20,21].
The dynamics of informed individuals and their effects on collective behaviour

has been the subject of numerous theoretical and experimental studies. Both have
found that a small subset of the population, trained with pertinent knowledge, such
as the location of a food source, is able to influence the swimming direction of the
shoal [22,23]. Effects of controlled external stimuli have also been studied, specifically
the use of biomimetic robots (ethorobotics) to elicit responses both at the individual
level [24–26] and in the collective behaviour of fish shoals [27–30]. Meanwhile, purely
computational studies have explored the dynamic response of biologically inspired
mobile agents in the presence of an informed agent or group of agents [31–33].
Here, we take a data-driven, bottom-up approach, aimed at deriving from experi-

mental observations, models of the interactions between conspecifics to investigate the
effects of speed regulation on leader-follower interactions in zebrafish shoals. Building
on recent efforts to infer details of the specific interactions among teleost fish
[18–21], we extend the individual zebrafish model formulated in [34] to study their
social behaviour in small shoals. Specifically, the model we describe incorporates
speed regulation, which is both fundamental to the locomotory patterns of individ-
uals [35,36] and has been recently proposed as a central mechanism for explaining
collective behaviour of similar teleosts [17,20,21,37,38].
To investigate the emergence of leadership, we consider a single informed agent

moving on a linear trajectory, which interacts with the ‘näıve’ shoal by modulating
its forward speed. We find optimum values for the strength of the interaction, which
enable an informed agent to lead and stabilise näıve group dynamics more effectively
than one which moves at a constant speed. We adapt a variety of global observables
(polarisation, cohesiveness, and milling) to explore the effect of the informed agent
and assess its ability to “control” collective behaviour.

2 Model

2.1 Data-driven stochastic model of individual zebrafish locomotion

The model used to describe the individual (isolated) swimming dynamics of zebrafish
was originally developed in [34]. Similarly to recent efforts on the so-called per-
sistent [8,39] or jump persistent [40] turning walker, the model uses two coupled
stochastic differential equations (SDEs) in time t, one for the forward speed U(t),
and one for the turning (angular) rate Ω(t)1

dU(t) = −θu(U(t)− μu)dt+ σudW (t) (1a)

dΩ(t) = −θωΩ(t)dt+ fcdZ(t) (1b)

where the coupling function fc is given as follows:

fc(U, σω, σ0, μu) = σ0

(
2σ0
σω

)− U
µu

(2)

Here, the parameter σ0 defines a maximum volatility, where the function fc decays
to zero passing through fc = σω when U(t) = μu. This relationship was estimated

1 Unlike in [34], the present study ignores the effects of explicit boundaries by considering
mobile agent dynamics in a periodic domain.
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from experimental observations which indicated a strong negative correlation between
the speed of the fish and the volatility of the turning rate [34]. The smooth random
walks constructed after integrating these equations in time have time-averaged speed
that approaches μu and directionally unbiased turning, i.e. null mean turning rate.
The mean-reversion (autocorrelation) rates θu and θω for each process along with the
variances of the stochastic Wiener processes dW (t) and dZ(t), denoted by parameters
σu and σω respectively, are all calibrated directly from experimental trajectory data
using a maximum likelihood method (also described in [34]).
To ensure forward only motion of the simulated fish, we limit the resulting in-

tegration of (1a) to positive values by setting any negative outputs to zero. Finally,
we prescribe a maximum value for the turning speed Ωmax = 15 rad s

−1, used to
truncate the output of the SDE in (1b) such that turning behaviour remains within
experimentally observed limits.

2.2 Multi-agent dynamics: Data-driven modelling of zebrafish shoals

2.2.1 Experimental observations of zebrafish pairs

The experimental data used to validate and calibrate the model developed in this
work was obtained at the Dynamical Systems Laboratory (NYU Polytechnic School of
Engineering, NY, USA)2. Using a high-resolution overhead camera (1280×960 pixels),
we recorded videos of pairs of wild-type zebrafish (Danio rerio) swimming together
in a shallow circular tank with radius of 45 cm and water depth of 10 cm, such that
that swimming is restricted to a quasi two-dimensional plane. Fish were 6–8 months
of age, with a mean body length (BL) around 3 cm. In total, 18 pairs of unique in-
dividuals were observed for 30min each including 10min of habituation to the novel
environment which was discarded from subsequent analysis [41]. The protocol is sim-
ilar to that described in [42].
Video image analysis and multi-target tracking was achieved using software devel-

oped in MATLAB (R2011a, MathWorks), sampled at 30Hz [30]. Raw experimental
data consisted of two-dimensional Cartesian positions x(t) = [x, y](t) for each fish.
Position data was smoothed using a third-order Savitsky-Golay filter with a moving
window of 15 frames (0.5 s) prior to the numerical computation of velocity and acceler-
ation via successive application of central differences. The forward speed u(t) = ‖v(t)‖
and the turning rate ω(t) were computed from the velocity vector; for further details
see [34,43].
To infer interactions between fish, we use the same force mapping method de-

scribed in [20] to compute the reaction force (acceleration) of a focal fish as a function
of the relative position of its neighbour. For each data frame, the acceleration ai of a
focal fish i is decomposed into two components: a speeding acceleration asi tangential
to the direction of motion, and a radial turning acceleration ati in the perpendicu-
lar direction. The position of a neighbouring fish j is then expressed in terms of its
front-back distance dFB and its left-right distance dLR, relative to the focal fish at
the origin, with its velocity vector aligned with the positive y-axis.
For this analysis, we discretise the relative positional space into bins defining a

square 30 × 30 grid extending up to 4BL (12 cm) along both axes. Selecting each
of the two fish as the focal fish, values of asi and a

t
i are accumulated as separate

two-dimensional histograms. The resulting histograms for both speeding and turning
components of the acceleration are then normalised by the bin population density and
averaged over the two focal-neighbour combinations. We exclude potentially strong

2 This study was approved by the University Animal Welfare Committee of New York
University under protocol number 13-1424.
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Fig. 1. Force mapping analysis comparing experimental and simulated data for
swimming pairs of zebrafish. (a) Force maps constructed by computing histograms of
speeding (tangential asi ) and turning (radial a

t
i) accelerations of a focal fish as a function

of the relative position of its neighbour. Data in the top two panels are computed from a
composite of all available data for live zebrafish pairs gathered for this study. Histograms for
simulated data in bottom two panels are computed by generating a realisation of the two-fish
model, using nominal parameters and Kv = 8. Overlaid contours indicate the associated bin
population density, normalised with respect to the most populated bin. (b) Comparative
projections of the histogram data for both speeding (left panels) and turning (right panels)
accelerations in respectively the front-back and left-right axes.

wall effects by rejecting frames in which either fish is closer than 2BL to the bound-
ary. Frames in which the speed of either fish is less than 0.5BL s−1 are also rejected to
reduce excessive fluctuations from tracking errors at low (or stationary) fish speeds.
The force (acceleration) maps shown in Fig. 1a (top two panels) are composite

histograms for the complete (18×20min) data set of 18 pairs of zebrafish, normalised
appropriately to provide average component accelerations in units of BL s−2. For both
components we find that variations in acceleration occur in a single directional axis,
namely the front-back (FB) axis for asi and the left-right (LR) axis for a

t
i.

With respect to the speeding acceleration, we find that within a small region
around the focal fish (< 1BL) there is a repulsive interaction, characterised by decel-
eration (asi < 0) when a neighbour is just ahead of the fish, and positive acceleration
(asi > 0) when immediately behind. At greater distances where dFB > 1BL, an
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attractive interaction dominates, with the focal fish accelerating in response to a
neighbour far ahead and, conversely, slowing down when a neighbour is further be-
hind. Along with very similar results golden shiners, and mosquitofish [20,21], we
conclude that speed modulation is an important factor for zebrafish interaction.
The turning acceleration map closely resembles that of the speeding maps, albeit

varying primarily as a function of dLR. Within a small radius (<0.5BL) around the
focal, we find that the focal fish accelerates in the opposite direction to its neighbour’s
position; adopting the convention that negative ati represents an acceleration to the
left and vice versa. At greater distances, we see a strongly attractive region in which
the turning “force” on the focal fish is in the direction towards its neighbour.
Since both speeding and turning forces are found to be principally governed by

the separation in orthogonal axes (front-back and left-right respectively), we can
summarise the interaction by projecting both forces along the relevant axis, shown
in Fig. 1(b) (black dashed lines). These force projections clearly show both linear
and repulsive regions of the interactions and provide a more convenient means of
calibrating the interaction model discussed in the following section.

2.2.2 Multi-agent model

Our interaction model is adapted from the previous work of Gautrais et al. [8] and
subsequent modifications by Calovi and others in [33,44]. We derive a minimal model
in which each contributing term, and associated parameters, are constrained by fea-
tures observed directly from the experiment.
Component accelerations of fish i, revealed from the force mapping analysis, are

explicitly included in the SDEs governing the time evolution of speed and angular
velocity in (1) by incorporating response functions U∗i (t) and Ω∗i (t), resulting in the
following (multi-agent) SDEs:

dUi(t) = −θu (Ui(t)− μu − U∗i (t)) dt+ σudWi(t) (3a)

dΩi(t) = −θω (Ωi(t)− Ω∗i (t)) dt+ fcdZi(t). (3b)

The response functions are described by normalised linear superposition of pairwise
interactions between the focal fish i and each of its neighbours, as follows:

U∗i =
1

Niθu

∑
j∈Vi
fd (dij)Ks (dij − ru) cos θij (4a)

Ω∗i =
1

Niθω

∑
j∈Vi
fd (dij) (1 + cos θij) [Kp (dij − rω) sin θij +Kv sinφij ]. (4b)

Here, Ni is the number of fish in the first shell of a periodic Voronoi neighbourhood
Vi (see construction in Fig. C.1 – Appendix C). Relative spatial metrics are described
by three variables: the signed angle θij between the focal fish, given its current veloc-
ity vector and its neighbour’s position; the signed relative heading angle φij between
focal fish i and neighbour j; and the distance dij between focal fish i and neighbour
j. Attractive and repulsive regions of the speeding and turning interactions are intro-
duced in both equations in (4), with a term proportional to the separation distance
dij , offset by a constant value ru or rω respectively.
The resulting forces are therefore linear with distance but will have an opposite

sign (repulsion) with respect to relative position of the neighbouring fish when the
separation is between ±ru/ω. The directionality of the speeding and turning response
are modulated by a factor of cos θij and sin θij respectively, such that |U∗i | is max-
imised when a neighbour is located directly ahead or behind, whilst |Ω∗i | is maximised
when a neighbour is located directly to the left or right, relative to the focal fish’s
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orientation vi. The strength of these terms is controlled with gain factors Ks for
speeding and Kp for turning.
An extra term in the turning interaction (4b), dependent on the relative head-

ing angles sinφij , provides a turning response acting to align the focal fish with its
neighbour, with associated gain parameter Kv. Evidence for this explicit alignment
interaction, to be presented in a future study, is revealed by exploring how the an-
gular acceleration ω̇ of zebrafish varies as a function of the relative pair orientation
φij . The turning interaction function is further supplemented by an additional pref-
actor (1 + cos θij) which imparts an angular weighting on the turning interaction,
maximised when the neighbour is directly in front with respect to the viewing an-
gle of the focal fish. As described in [33,44], this extra position-dependence breaks
the otherwise symmetric force response allowing for stable rotational (milling) and
winding collective phases to emerge, producing qualitatively better fits to the group
behaviour of small zebrafish shoals.
In contrast to the previous models mentioned in [8,33], we also provide a function

fd which restricts the range of both the speed and turning response, defined as follows:

fd (dij) =

{
1− exp [(dij − dc) /δ] dij < dc
0 otherwise

(5)

Here, the constant dc prescribes a hard, radial cut-off distance to the interaction,
where fd decays from a maximum at one, dropping to zero with a rate given by
parameter δ. With fd as a multiplicative factor, we thus obtain responses which are
roughly proportional to the distance dij at short distances, and decay rapidly at the
cut-off distance dc – preventing unrealistically strong interactions between distant
neighbours [8]. Finally, both functions in (4) are normalised by the associated SDE
mean-reversion rates θ, where θu and θω are constant for all simulations of the model,
discussed in what follows.

2.3 Model calibration and parameter estimation

In this study, we provide a nominal set of approximate model parameters (see
Table B.1 in Appendix B), estimated via direct comparison to the available experi-
mental data. An exhaustive analysis in which we explore and fine tune the current
model and its parameters will be presented elsewhere. For the calibration of the indi-
vidualistic model and associated parameters described in Sect. 2.1, we refer the reader
to our previous work [34]. One key difference is that the zebrafish pairs observed in
this study are found to have an average speed of around 3BL s−1, compared with
4.6BL s−1 reported for isolated zebrafish. For this reason, we select equilibrium speed
parameter μu = 3BL s

−1 as the present nominal value. The remaining free parame-
ters concern those of the interaction response functions: gain strengths Ks (speeding
attraction / repulsion), Kp (turning attraction / repulsion), and Kv (turning align-
ment); repulsion radii in each axis: ru and rω; and distance decay function parameters
dc and δ.
The plots in Fig. 1b show axial projections of the speeding and turning accelera-

tion maps through the origin in the front-back (cos θij = 1) and left-right (sin θij = 1)
axis respectively, comparing both experimental and simulated data sets. The response
curves through these primary axes demonstrate the range of the repulsive region,
where we estimate the radii ru ≈ 1.4BL and rω ≈ 0.8BL from the zero-crossings
either side of the y-axis. Beyond these radii we observe approximately linearly in-
creasing accelerations with distance. Data suggests that both acceleration responses
subsequently decay to zero beyond ≈ 10BL, however the decreasing density of data at
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this range hinders an accurate estimation of the cut-off distance dc. For the purposes
of this study, we set dc = δ = 10BL.
Lastly, we fit the gain parameters Ks, Kp, and Kv, by performing simulations of

the model with durations up to that of the complete experimental data set (360min
with sampling frequency of 30Hz) such that sufficient comparison can be made using
the same force mapping technique. The results of such a simulation and comparison
to experimental data are shown in Fig. 1, where we select Ks = 2.5 s

−2 and Kp =
3 cm−1 s−2, to best match the response projections for both asi and ati. Importantly,
we find that the choice of gain parameters for each of the interaction terms is largely
independent and can be tuned separately to match the desired amplitudes whilst
obtaining a good degree of fit in the repulsive regions. Estimation of the parameter
Kv is less straightforward, due to the dependence of the alignment term in (4b) on the
relative orientation φij , which is not represented in the force maps we have calculated
(Fig. 1). In this study, we select an approximate alignment strength after fitting Ks
and Kp as described above, tuning the value of Kv such that resulting group level
dynamics (e.g. distributions of P ,M , and C) correspond well with experimental data.
For 2-fish simulations, we find Kv ≈ 8 s−2 provided the best fit to collective dynamics
described by the global observables, with an increase to Kv ≈ 15 required to maintain
comparable dynamics for N ≥ 5 fish.

3 Collective dynamics and the role of speed regulation in leadership
emergence

Next, we use the model derived above to investigate the role of speed modulation in
the emergence of leadership within small groups of fish. We consider the collective
dynamics of a group of N näıve agents which are perturbed by a single “informed”
agent (IA), moving along a predetermined trajectory, modulating its forward speed
through a feedback mechanism with its neighbours.
The model parameters of the agents belonging to the näıve group are presented

in Table. B.1 (Appendix B). The internal dynamics of the informed agent (labelled
agent 0) is entirely deterministic, with (constant) zero turning speed such that it trans-
lates linearly across the simulation cell. Its motion is driven by the same equations
in (3), with speed U0(t), but where Ω0(t) = 0 and σudW (t) = 0,∀t. A compatible
interaction network between all agents is chosen based on a periodic equivalent to
the non-metric Voronoi neighbourhood used in related models [8,13,33,45]. A more
detailed description and a diagram of the construction of this topology is shown in
Fig. C.1.
The set of system parameters we explore is restricted to independent variations of

the equilibrium speeds of the näıve group μnu and of the IA μ
0
u, along with the degree

to which the IA moderates its speed with respect to its näıve neighbours via K0s .
Interaction gain parameters K[s,p,v] for the näıve group are fixed to nominal values
throughout the study.

3.1 Quantifying collective behaviour and responses

In order to quantify the effects of the IA, we consider global observables both with
respect to the centre-of-mass (CoM) frame of the näıve group and with respect to the
IA position [28,31,33].
In the CoM frame, we focus on two observables (order parameters) varying in the

range [0–1]: (i) Polarisation P which describes the relative alignment of the group,
maximised when every member is oriented in the same direction, and (ii) Cohesion
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Fig. 2. Schematic of experimental leadership scenario. Informed agent (circled) trans-
lates with velocity v0, linearly across the periodic simulation cell. N = 5 näıve agents and
the informed agent interact via the prescribed Voronoi network topology (grey edges). The
velocity vector vn of the näıve group centre of mass (red square) is shown. Fish are coloured
according to their orientation.

C which is a measure of the spread of positions around the CoM, as exponentially
decreasing function relative to a fixed scale length rcoh = 3BL. Following the descrip-
tion in [33], we also compute associated susceptibilities χP and χC of the näıve group
polarisation and cohesion – a normalised measure of the respective variances, which
we use to describe the relative stability of the group dynamics.
Using the same definitions for the order parameters above, we define a similar

set of observables in the IA frame: (i) Polarisation P 0 describes the alignment of
the group average orientation with that of the IA, and (ii) Cohesion C0 from the IA
position at x0. As described in [28], we also compute a ‘stretching’ order parameter
S0, maximised when the velocities of all näıve group members points in the direction
of the IA’s position.
A full description and mathematical derivation of each of these observables can

be found in Appendix A.

3.2 Numerical experiments

For this study we consider a group of N = 5 näıve fish, interacting with a single IA
(Fig. 2). Average values of the global observables are compared across trial simulations
in order to assess the perturbing effects of the IA. Simulations are performed with
a single set of initial conditions per trial in a periodic cell of side length L = 40BL
(120 cm) for 1000 s, discarding the first 100 s to remove initial transient dynamics.
The multi-agent model is integrated using a Euler-Maruyama method with a time-
step Δt = 0.1 s. Näıve population initial positions, xn, are randomly generated within
a circle around the origin, such that their mean separation is of the order 1BL, with
randomly assigned heading directions and initial speeds all equal to μu. The IA’s
initial position x0 is set at the origin for every trial, with heading (fixed) along the
positive x-axis with initial speed equal to μ0u.
We also compute the distributions of the (CoM frame) observables over the same

time interval as a function of equilibrium speed μu, in the absence of the IA. This data,
averaged over 10 simulated replicates, is used to provide baseline values to compare
the effects of the IA with the unperturbed dynamics of the näıve group (Fig. 3).
Data resulting from numerical experiments associated with the IA perturbations

consist of a matrix for each global observable we describe in Sect. 3.1, where each
element is the mean value computed over the last 900 s for the combination of parame-
ters [μu, μ

0
u,K

0
s ]. Each of the resulting matrices are subsequently processed using an

algorithm described in [46], providing multi-dimensional smoothing based on a pe-
nalised least-squares method via the discrete cosine transform.
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Fig. 3. Baseline order parameters P ′ and C′ computed for simulations of N = 5
unperturbed (näıve) fish as a function of the equilibrium speed μu. The relative
distributions of both observables are shown as intensity maps, normalised within the specified
ranges, for increasing values of μu. Red traces represent average values with error bars
spanning ±1 s.d. from the mean. Susceptibilities χP and χC are overlaid on the associated
axes in green.

4 Results and discussion

4.1 Effects of the informed agent on näıve group dynamics

Simulations are executed using the following parameter ranges: μu = [0.2, 0.4, . . . , 9.6]
BL s−1, μ0u = [0, 0.4, 0.8, . . . , 18.8] BL s−1, and K0s = [0, 0.5, 1, . . . , 10]. We focus on
cross sections of the parameter space in which we keep the value of the näıve group
equilibrium speed μu fixed at a value close to the observed average swimming speed
(3BL s−1), and at twice this value (6BL s−1). We report the temporal average values
of the order parameters and spatial observables, as a function of the ratio of equi-
librium speeds μ0u/μu and compare the resulting response curves for different values
of the IA (speeding) interaction strength K0s . We discuss separately the special case
in which the IA moves with fixed speed (no modulation: K0s = 0), followed by a
description of the effects of increasing K0s such that the IA modulates its speed as a
function of that of its neighbours.
Videos of the simulated collective dynamics for both the fixed speed IA (μu =

2μu,K
0
s = 0) and speed modulating IA (μu = 2μu,K

0
s = 4) scenarios are available in

the on-line supplementary material.

4.1.1 Informed agent with constant speed (K0s = 0)

The results shown in Fig. 4 report näıve group responses in terms of its CoM po-
larisation (P ), cohesion (C), and associated susceptibilities (χP and χC). In order
to highlight the resulting dynamical perturbations, we display on the vertical axis,
the difference between averages of the perturbed system and baseline values (P ′, C ′,
etc.) computed for the unperturbed five fish school for corresponding values of μu.
Note that when the IA moves at a constant speed, the response characteristics of the
different observables shown in each panel are indicated by the darkest trace, corre-
sponding to K0s = 0.
Our first observation is that when the equilibrium speed of the IA, μ0u, is less than

that of the näıve group (shaded regions where μ0u/μu < 1), the presence of the IA
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Fig. 4. Polarisation and cohesion response (CoM frame) to interaction with
informed agent. The panels show the difference between unperturbed baseline values
P ′, χ′P , C

′ and χ′C (red) and average values computed for the perturbed system (polari-
sation P and cohesion C), and associated susceptibilities (χP and χC) as a function of the
ratio of the equilibrium speeds μ0u/μu of the informed agent and the näıve population. Traces
are shown for a range of values of informed agent interaction strength K0s = [0, 0.5, . . . , 10]
with: (a) fixed näıve group equilibrium speed μu = 3BL s

−1 and (b) μu = 6BL s−1. Shaded
regions indicates where the equilibrium speed of the IA is less than that of the näıve group.

has the effect of disrupting the dynamics of the näıve group, whereby we find reduced
polarisation and cohesion compared with the baseline values indicated. Within this
region, we also find the corresponding susceptibility measures χp and χC to be above
their baseline values, indicating an increase in the temporal variance of both order
parameters.
As the equilibrium speed of the IA approaches that of the näıve group, the re-

sponse of each of the observables becomes more pronounced – we consistently observe
values increasing (or decreasing) towards the respective baseline. Each response curve
then reaches a maximum (or minimum) at a critical value of the ratio μ0u/μu > 1,
which is a function of the näıve equilibrium speed μu. In terms of the group polar-
isation, we find that baseline values of P and χP are obtained almost exactly when
μ0u = μu, for both examples of fixed näıve group equilibrium speeds shown. This
suggests that when the IA is translating linearly at a constant speed, provided the
speed is well matched with the näıve group, we recover baseline average polarisation
without any decrease in the stability of the group dynamical state.
When the equilibrium speed of the IA is increased beyond μu, the polarisation

continues to rise, exceeding baseline values, accompanied by a proportional decrease
in susceptibility χP . Maximum variation ΔP and ΔχP from the unperturbed base-
lines are reached simultaneously at approximately 1.4μu and 1.2μu for fixed näıve
group equilibrium speeds of 3BL s−1 and 6BL s−1 respectively, after which average
values once again fall below baselines at approximately 2.0μu and 1.5μu. Past this
value of the IA speed, the dynamics effectively becomes invariant to further increases
in μ0u. Importantly, we find that the position of this peak in the response curve is
almost identical across each of the observables, in terms of the IA equilibrium speed
required to produce the maximum response.
A similar analysis of the näıve group cohesion reveals a more subtle group response

to the motion of the informed agent, which is found to be enhanced as a function of
the equilibrium speed of the näıve population. In the lower speed group (Fig. 4a),
we find that an informed agent moving with constant speed always disrupts cohe-
sion with respect to the baseline values (C < C ′, χC > χ′C). However, for the faster
group (Fig. 4b), the baseline cohesion susceptibility χC is attained when μ

0
u ≈ μu,



Dynamics of Animal Systems 3353

Fig. 5. Polarisation, cohesion and stretch parameters (informed agent frame)
response to interaction with informed agent. Panels depict the effect of the presence
of the informed agent on the näıve group in terms of their polarisation P 0, coherence C0

and stretch S0 with respect the position and orientation of the informed agent as a function
of the ratio of equilibrium speeds μ0u/μu. Traces are shown for a range of values of informed
agent interaction strength K0s = [0, 0.5, .., 10], with: (a) fixed näıve group equilibrium speed
μu = 3BL s

−1 and (b) μu = 6BL s−1. Shaded regions indicates where the equilibrium speed
of the IA is less than that of the näıve group.

achieving maximal cohesion fractionally above the unperturbed value when
μ0u = 1.2μu, somewhat less than the IA equilibrium speed required for maximal polar-
isation. Further analysis of our data indicates that when perturbed by a fixed speed
IA, baseline cohesion can only be exceeded when μu ≥ 3.6BL s−1.
We now consider the response of the näıve group to the relative position and

orientation of the IA itself. The IA frame observables (P 0, C0, and S0) characterise
the perturbations of the IA specifically in terms of its ability to entrain the näıve
group. We define optimal entrainment when P 0, C0, and S0 are maximised, i.e. when
the näıve group: (i) is highly aligned with the IA orientation, (ii) has a compact dis-
tribution around the IA position, and (iii) on average has a group velocity directed
towards the IA.
The response curves for the IA frame observables are shown in Fig. 5, where again

we focus initially on the K0s = 0 (darkest) trace. The features of all curves are almost
identical, exhibiting peaks in the same position in terms of the IA equilibrium speed,
similar to the CoM frame observables. In the IA frame however, we find that as the
IA speed is increased from zero, the values of P 0, C0, and S0 increase monotonically
towards their peak values, attained when the (constant) speed of the IA is just faster
than the näıve group equilibrium μu. Above 2.0μu and 1.5μu, respectively for the
slower and faster näıve group, values decrease and ultimately saturate with further
increases in IA speed. Although both P 0 and S0 saturate to a value just above those
found when μ0u < μu, C

0 is further reduced. Most likely, this is due to the periodic
translation of the IA, which, moving at speeds too high for the naive group to main-
tain stable cohesion with its position, is still able to influence the orientation of the
group as it passes on each transit.

4.1.2 Feedback modulation of informed agent speed (K0s �= 0)
We proceed by considering the effect of an IA which is able to modulate its speed via
its interaction with the näıve group. For each of the observables presented in Figs. 4
and 5, the effects of increasing the strength of IA speed modulation are represented
by overlaying the set of traces corresponding to discrete increases in K0s . As K

0
s is

increased, the IA becomes more reactive, now able to accelerate from its equilibrium
speed according to (4a), depending on the position of its neighbours.
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The family of shifting curves for each observable indicates a clear trend, charac-
terised by a broadening of the peak response in the horizontal axis, corresponding to
an increase in IA equilibrium speed relative to the näıve group. In the (shaded) regions
where μ0u < μu, we find that the value of K

0
s has a negligible effect on the perturbed

dynamics which cannot be actively controlled by varying the parameters of the IA.
However, when μ0u > μu, we note that the response peak varies as a function of K

0
s ,

resulting in enhanced näıve group dynamics (increased P,C) with increased stability
(reduced variances χP and χC). Specifically, by comparing the response curves ob-
tained when the IA moves at constant speed, and those where K0s > 0, we observe the
following features: (i) an approximately linear increase of the equilibrium speed of the
IA μ0u is required to produce a maximal dynamical response (of all observables), as a
function of K0s , and (ii) the variation of the peak value of the observables increases
as a function of K0s (decreasing for χP and χC) until above approximately K

0
s > 4

after which the peak enhancement of speed modulation decreases. Plots indicating
the peak observable values and corresponding equilibrium speed ratio are provided
in Figs. C.2 and C.3 (Appendix C).
The first observation suggests that as we increase the strength of the interaction,

and thus the maximum allowable acceleration of the IA, we also need to increase
its equilibrium speed μ0u in order to maximise the dynamical response of the näıve
group. An intuitive explanation can be given by thinking of the coupling between
the informed agent and the naive group in terms of a “spring” connecting the IA
to the naive group. In this analogy, the parameter K0s represents the stiffness of the
connecting spring. As this parameter increases, so does the restoring force pulling
the IA towards the group and vice versa. Therefore an increase in the equilibrium
speed of the IA is needed to counterbalance such a force and make the IA able to
pull away from the naive group so as to influence its collective motion. The second
observation indicates that the IA with feedback speed modulation is able to better
enhance the dynamics of the näıve group, with increased polarisation, cohesion and
entrainment, compared with the IA moving at constant speed. The enhancement
provided by increasing the IA’s ability to modulate its speed is limited however, where
we find an optimal value K0s ≈ 4, independent of the naive group equilibrium speed.
The effect of introducing feedback control of the IA speed is therefore to magnify

the responses when compared to those obtained in the presence of an IA moving at
constant speed, provided that we balance increasing values of K0s with an appropriate
value of the IA equilibrium speed. We shall refer to this region as the “controllable”
region where varying the IA speed and interaction strength K0s allows to vary at
will, within a certain range, the value of each of the observables. This controllability
however is limited within a range of K0s < 4, above which, increasing the interaction
strength eventually reduces the enhancement or entrainment.

4.2 Conclusions

After deriving an experimentally consistent model of zebrafish shoals which include
novel speed regulatory interactions, we investigated the effects of an informed agent on
a näıve group. We explored both the case where the informed agent moves at constant
speed and where it modulates its speed as a feedback function of the position of its
neighbours.
Our findings suggest that the presence of an IA can increase global polarisation,

reduce susceptibility, as well as elicit entrainment along its trajectory, particularly
when the IA is able to modulate its speed as a function of its neighbours’ positions.
Specifically, we find that the peak response occurs when the parameters of the IA
enable it to regulate its speed, moving just faster than the näıve group. This allows
the IA to maintain high connectivity with the group, and take up a position at the
front of the group with respect to their average velocity.
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Appendix A – Quantifying collective behaviour and responses

Here, a full description is given of the global system observables which are used to
describe the (global) macro-scale, or collective dynamics of both experimental and
simulated fish schools. In order to quantify the effects of the informed agent (IA) we
consider the global observables both with respect to the centre of mass (CoM) frame
of the näıve group, and with respect to the IA position.

Dynamical order parameters

In general, we define the centre of mass (CoM) X(t) at time t of the group of N
näıve agents as the mean vector of agent positions xi(t). Computation of this value is
complicated by the unbounded, toroidal geometry of the periodic environment. How-
ever, a suitable algorithm which efficiently yields the correct quantity is described
in [47] and implemented here. Positions relative to the CoM given are thus given by
ri(t) = xi(t)−X(t). In this CoM reference frame, we then define two order parame-
ters which describe the dynamic collective state of the shoal: (i) Polarisation P (t)
describes the degree to which the orientations of the agents are aligned, maximised
when agents all share a common heading direction. (ii) Cohesion C(t) provides a
measure of the spread of agents from the CoM, as an exponentially function with
respect to a fixed scale-length rcoh = 3BL. The expression for each order parameter
are shown below where we henceforth omit explicit time dependences for clarity:

Polarisation: P =
1

N

∥∥∥∥∥
N∑
i=1

vi
‖ vi ‖

∥∥∥∥∥ (A.1)

Cohesion: C =
1

N

∑
exp (− ‖ ri ‖ /rcoh)) (A.2)

where v(t) = (1/N)
∑
vi(t) is the mean group velocity of the näıve agents.

By substituting CoM position X(t) with the position of the (single) informed
agent x0 we obtain relative positions ri0, and calculate the cohesion with respect
to the IA position C0 (IA reference frame), see [31]. We also define the polarisation
of the näıve group with respect to the orientation of the IA P 0 by considering the
alignment between the näıve group (mean) velocity vector and that of the IA v0.
From (A.1), we obtain

P 0 =
1

2

∥∥∥∥ 〈v〉n‖ 〈v〉n ‖
+
v0
‖ v0 ‖

∥∥∥∥ (A.3)

where 〈v〉n is the mean velocity vector of the näıve group. An additional “stretching”
order parameter S0 measured in this reference frame, derived previously in [28],
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considers the alignment of näıve group velocities with the vectors −ri0 towards
the IA:

S0 =
1

2
− 1

2N

N∑
i=1

ri0 · vi
‖ ri0 ‖‖ vi ‖ (A.4)

where S0 is maximised when the all näıve group agents are converging directly on the
IA’s position, reducing as their combined velocities becomes increasingly misaligned
(stretching away from its position).

Susceptibilities

Following the recent work of Calovi et al. [33], our analysis also includes a measure
of the linear response (fluctuations) of measured quantities (e.g. P , M , and C) to
small perturbations, quantified by the susceptibility χ, calculated for the polarisation
P response as follows:

χP = N
[〈
P 2
〉− 〈P 〉2] (A.5)

where angle brackets refer to the time average of the corresponding quantity. We
refer the reader to [33] in which the measurement of these fluctuations as a function
of the model parameters is used to identify transitions between the various dynamical
collective states. In the present study where most model parameters remain fixed for
the näıve population, we utilise susceptibilities as a way of quantifying the relative
stability of the population dynamics as we vary the behaviour of the IA and its
influence on the näıve group. Correspondingly, a reduction in the quantity χmeasured
for one or more of the order parameters reflects an increased stability of the dynamical
state.

Appendix B – Tables

Table B.1. Nominal simulation parameters.

Description Symbol Unit Value

SDE parameters

equilibrium speed μu BL s−1 [1. . . 10]
speed volatility σu BL s−1 1.40
turning speed volatility σω rad s−1 2.85
max. turning speed volatility σ0 rad s−1 12
speed mean-reversion rate θu s−1 0.59
turning speed mean-reversion rate θω s−1 2.74
Interaction parameters

Speeding response gain Ks s−2 2.5
Turning response gain (positional) Kp cm−1 s−2 3
Turning response gain (alignment) Kv s−2 [8. . . 15]
Speed modulated repulsion radius ru BL 1.4
Turning modulated repulsion radius rω BL 0.8
Interaction cut-off distance dc BL 10
Distance decay rate δ BL 10
Other
simulation time step Δt s 0.1
simulation cell side length L BL 40
zebrafish body length BL cm 3
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Appendix C – Additional Figures

Fig. C.1. Computing a Voronoi interaction neighbourhood in a periodic plane.
The connectivity A = {aij} ∈ RN×N between agents in this model are derived from the
first-shell of the Voronoi tessellation of 9N positions, replicated from N positions in the
L × L primary image (pink square) across the eight additional virtual images forming the
periodic system. The network topology in two-dimensions is first computed via the Delaunay
triangulation of all 9N points (blue edges), of which we extract all edges to or from one of
the N vertices in the primary image. From this subgraph we remove edges representing self
interactions across periodic images and, where vertex pairs are duplicated (primary-virtual or
primary-primary), we choose the edge connecting to the closest of the two vertices, resulting
in the final interaction network, or adjacency matrix: A (red edges). Finally, the inter-agent
distance matrix D = {dij} ∈ RN×N is calculated from the appropriate distances from the
set of 9N vertices, given A.
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Fig. C.2. Peak values of CoM frame observables (red) and corresponding relative
equilibrium speed μ0u/μu (blue) required, as a function of K

0
s . Values obtained for

centre-of-mass frame observables P and C for naive group equilibrium speed: (a,b μu =
3BL s−1, and (c,d) μu = 6BL s−1.

Fig. C.3. Peak values of IA frame observables (red) and corresponding relative
equilibrium speed μ0u/μu (blue) required, as a function of K

0
s . Values obtained for

informed agent frame observables P 0, C0 and S0 for naive group equilibrium speed: (a–c)
μu = 3BL s

−1, and (d-f) μu = 6BL s−1.
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