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1. Introduction  
 

How will automation affect human wellbeing? This question arguably dates back as 
far as the first industrial revolution, i.e. the invention of the steam engine, and beyond.  It is 
also a question that has more recently recaptured the attention of social scientists following 
the advent of Industry 4.0, and in particular the emergence of Artificial Intelligence (AI). Most 
noticeably from an economics perspective, several recent publications have sought to 
evaluate how AI will transform labour productivity (Brynjolfsson et al., 2018), economic 
growth (Aghion et al., 2017), international trade (Goldfarb and Trefler, 2018), and 
employment (Arntz et al., 2016; Agrawal et al., 2019). 
 

To put it succinctly, while AI has the potential to result in economic growth, prosperity, 
and positive change, it could just as easily produce job displacement and income inequality 
(Korinek and Stiglitz, 2017). That is, despite the excitement over its many promises, the recent 
debate regarding AI seems to focus on the future of work “in a world in which computer 
algorithms can perform many of the functions that a human can” (Furman and Seamans, 
2019, p.161). Indeed, comparable to the emergence of any other disruptive general-purpose 
technology (GPT), the rise of AI will have a profound impact on our daily lives and well-being. 
As Buarque et al., (2020, p.175) state, it will eventually "lead to significant shifts in 
employment and income distributions across and within society, particularly when the gains 
are concentrated in AI-producing regions or sectors". 
 

Irrespective of whether your point of view of AI is optimistic or pessimistic, it is 
unquestionable that policies enacted today will shape how AI impacts society tomorrow 
(Agrawal et al., 2019). As interests around AI have begun to increase, countries around the 
world have started developing their own AI programmes with an eye on becoming a market 
leader in this disruptive technology (Dutton, 2018). Equally, scholars in world class institutions 
are also actively working to examine, propose and implement policies that can enhance the 
benefits offered by AI, while mitigating against any of its negative consequences. 
Instrumental in this arena was a conference organised by the OECD in 2017 “AI: Intelligence 
Machines, Smart Policies” with the sole aim of mobilising social, economic and political 
responses to the transformation of society brought on by the advent of AI technologies. 
Therefore, we are not only observing a mere surge in AI advancement, but also rising political 
concern about how to respond to it, and moreover how it should be managed. However, 
before it is possible to design fit-for-purpose policies, we must first understand, in an in-depth 
manner, the evolution and diffusion of AI systems as well as their many socio-economic 
consequences that are just now unfolding.  
 

It is strikingly obvious that AI has become a hot topic and a frequently used buzzword. 
Nevertheless, despite its growing popularity, one dimension which remains unclear is how we 
can accurately measure the creation and diffusion of AI. In fact, whilst there seems to be a 
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consensus that AI will transform our daily lives, it remains to be seen how these 
transformations will manifest in space i.e. through economic growth or productivity. As a 
consequence, AI risks becoming a policy ahead of the theory initiative, based primarily on 
speculative analysis and anecdotal evidence.  Moreover, to the best of our knowledge, the 
relevant literature continues to even lack a precise definition of AI. Therefore, it is critical for 
AI’s successful implementation that there is an accurate depiction of its creation and 
development. Further still, to produce reliable inferences about how AI impacts our economy 
and society, we also need to develop robust data on its spatial and temporal diffusion; 
otherwise, our understanding of AI will remain speculative at best.   
 

Against this backdrop, the present handbook chapter is a structured attempt to inform 
AI discourse and provide both a review of the relevant literature as well as a novel 
methodological axiom to analyse the creation and diffusion of AI technology. Essentially, our 
objective is to construct a relational database composed of academia publications on AI 
derived from Web of Science (WoS) data. Thereafter, this information is used to graph the 
distribution of AI knowledge in both the global and EU scientific communities. In doing so, it 
is possible to address the issue of when and where AI is created, as well as to identify potential 
trends in the evolution of this new disruptive technological domain.  
 

As previously mentioned, very few empirical studies have managed to accurately 
disentangle the relationship between AI and socio-economic outcomes, primarily due to the 
lack of necessary data required. Furthermore, those notable exceptions that have addressed 
this issue, have primarily looked at the impact of automation on labour outputs by using proxy 
data for the local exposure of AI methods. For instance, Acemoglu and Restrepo (2017) and 
Graetz and Michaels (2018) use data from the International Federation of Robotics (IFR) to 
estimate the regional and industrial exposure to robots and thus determine their impact on 
the local economy. Yet, their dataset by no means captures all the dimensions of AI, it merely 
proxies a fast-growing technology for the presence of robots in the industry. Hence, it does 
not actually allow the authors to correctly infer the multiple aspects or consequences of 
Artificial Intelligence in an economy.  
 

Another common approach is to measure the likelihood that certain occupations will 
become automated by advances in the field of AI. Frey and Osborne (2017) famously 
pioneered this method when they gathered data on the probability that different cognitive 
tasks would become “computerized” in the future. Thereafter, they combined this 
information with the O*NET dataset, which describes the dependency of 702 distinct 
occupations on each of these tasks. Using both sets of data, they were able to estimate the 
prospect of automation for all 702 occupations. The task-based approach to measuring the 
risk of automation has since become a popular strategy for scholars looking to evaluate the 
relationship between AI and the labour market (OECD 2017; Acemoglu and Restrepo, 2019). 
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For example, both Arnitz et al. (2016) and Nedelkoska and Quitini (2018) applied this 
approach to study the likelihood of automation for the OECD member nations. 

 
However, despite its merits, these task-based approaches all suffer from the same 

empirical shortcoming in that they do not enable a thorough and detailed investigation into 
the presence and diffusion of AI across local economies. As a consequence, they are not 
suitable methods for evaluating the determinants of AI knowledge production and its many 
implications on society. In fact, these task-based approaches only permit a high-level view of 
how AI driven automation ‘might’ affect one specific aspect of the economy, i.e. the local 
labour market. 

 
Given the above, it therefore appears that existing data are not sufficient to fully 

appraise the spread of AI, and as a consequence we are severely limited in our capacity to 
understand the drivers of this change and its impact on our society. Notwithstanding these 
numerous shortcomings, authors have begun exploiting recent advances in the field of text-
analytics to circumvent these issues. Namely, previous research used text-analysis to classify 
patents and other documents into unique “technological” groups and used this information 
to infer the extent of innovation in a given domain i.e. measuring environment-related 
technologies (Haščič and Migotti, 2015). Following this logic, Mann and Puttmann (2018) 
applied a machine learning algorithm to a dataset consisting of texts from American patents 
to sort them into automation and non-automation innovations. Once they identified the 
automation patents, the authors could (geo)locate them in time and space. Further still, they 
could begin to expose the relationship between the volume of automation patents and local 
employment outputs.  
 

Similarly, Cockburn et al. (2018) conducted a keyword search on a corpus of 
publications and American patents to distinguish which “inventions” should be classified as 
symbolic systems, robotics, and deep learning. Thereafter, the authors compared the 
diffusion of these methodologies across fields, regions, and time. Moreover, at least for the 
scope of this analysis, Buarque et al. (2020, p.176) employed a list of technological classes 
and keywords to identify European patents that are associated with AI methods. In doing so, 
their goal was to “build a comprehensive data set of AI patents, which will enable us to study 
AI knowledge production and how it is distributed across the different regions and 
technological sectors of the European economy”.  
 

Following Buarque et al. (2020), the present investigation employs a list of identifying 
keywords from WIPO (2019) to map the creation of scientific knowledge.  Therefore, unlike 
most prior studies the focus here is not on patents, but rather on the scientific literature that 
concerns Artificial Intelligence. As the initial step, we created a subsample of academic 
documents from the Web of Science (WoS), i.e. our primary source of bibliographic data. WoS 
indexes approximately 280,000 scientific journals, as well as several conference proceedings 
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and books.1 As such, it provides valuable information on academic publications, authors, 
institutions, and citations. Most importantly, however, the WoS also collects data on the 
keywords for each document - as provided by the authors. Exploring the information available 
in these keywords, we performed a search algorithm to identify and classify all the AI relevant 
documents. More precisely, we looked within the publications for keywords that describe an 
AI method, like “neural networks” or “genetic algorithms.” We then classified and sampled a 
document as AI whenever it includes at least one keyword associated with the technology. 
Next, we used the metadata of these AI publications to graph the development of Artificial 
Intelligence in space and time. Thus, providing a valuable map of the creation and diffusion 
of Artificial Intelligence among the global scientific community.  
 

While the present investigation should prove very useful, it does not provide empirical 
evidence on the determinants of AI creation, nor does it provide estimates on its potential 
implication for local economies. Instead, the objective is to offer a first glance at the creation 
and diffusion of AI methods in the scientific world and on a variety of spatial scales, i.e. global, 
national, and regional. In turn, we hope to inspire and support more detailed empirical 
investigations into this emergent and meaningful technology.  
 

Taking advantage of the proposed data and methods, future investigations in the field 
might shine a light on how to foster the development of AI as well as produce essential 
estimates on the impact of AI on social inequality and human wellbeing. Following this 
approach, further analysis will potentially contribute not only to our understanding of this 
general-purpose technology, but also inform policymakers seeking to design "smart policies" 
in the age of Artificial Intelligence. Most policy briefings currently emphasize the economic 
opportunities brought about by AI systems, and the need to educate displaced workers for 
the jobs of the future (OECD, 2017). The methodological framework developed by Buarque 
et al. (2020), which we also employ here, will allow one to touch - at least marginally - on both 
of those issues. First, mapping the evolution of AI would allow for the recognition of the 
sectors/regions with related core competencies most suited for building a development 
pathway into this rapidly growing technology field (Hidalgo et al., 2007; Kogler et al., 2017; 
Whittle, 2020). That is, mapping the diffusion of AI across regions and sectors would enable 
one to recognize opportunities to "invest in and develop AI for its many benefits" (The White 
House, Executive Office of the President, 2016). Second, the AI "knowledge-space" (Kogler et 
al., 2013) could identify which sectors/regions are more likely to be affected by this expanding 
technology. In other words, studying the diffusion of AI could help to identify those more 
vulnerable to job-displacement and other negative consequences. 
 

 
1 The present analysis is based on data retrieved from the following Web of Science bibliographic databases: 
“1980-2017 – annual Science Citation Index Expanded and Proceedings-Science combined”. 
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2. Identification Strategy 
 

The first phase of our analysis involves identifying AI documents. The database which 
supports our analysis is a raw Web of Science (WoS) corpus containing articles from over 46m 
journals, books, and conference proceedings. Following, we will use all documents in that 
database that have been published over the period 1990-2016, which is about 38m records. 
While WoS shares commonalities with other bibliometric databases, including Google 
Scholar, Scopus, or Microsoft Academic Knowledge Graph, two noticeable differences are 
pertinent for our investigation. Firstly, WoS has a proclivity to favour journal articles over 
other outlets. Further, WoS has a bias towards the “Hard Sciences”, i.e. the Natural Sciences, 
Engineering, and Biomedical Research, at the expense of Social Science and Arts and 
Humanities (Mongeon and Paul-Hus, 2016). Nevertheless, for the purpose of the present 
investigation these issues are not that detrimental. In fact, given the substantive nature of AI 
and the fact that journal articles are the preferred outlet for dissemination across relevant 
disciplines, this bias may even serve to our advantage and increase our overall coverage. 
 

Turning to the information contained within each document, WoS lists the titles, 
journal names, year of publication, authors, and their affiliations, among other data. Most 
importantly, WoS provides a list of keywords for each document, as determined by the 
authors. For these reasons, WoS can rightfully be considered a strong medium for analysing 
the creation, integration, and evolution of Artificial Intelligence throughout space and time. 
 

Given its inherently fuzzy nature, there is no easy way to identify the AI documents. 
To tackle this problem, we adopt a commonly used technique in bibliographic studies and 
apply a keyword identifier to the WoS database. Namely, we search across the keywords 
section of each document for AI-specific terms, such as “machine learning” or “supervised 
learning”. In turn, this approach enables us to classify all documents in our database as either 
AI or Non-AI. 
 

Naturally, the choice of AI identifiers will heavily influence our results. For this analysis, 
we follow the example set by Buarque et al., (2020) and borrow a list of AI-related keywords 
produced by the World Intellectual Property Organization (WIPO, 2019). We believe WIPO’s 
identification gives a more recent and specific definition of AI than other alternatives. Seeking 
to identify AI-related patents in Europe, Buarque et al., (2020) employed a list of 43 n-grams2 
that are indicative of modern AI technology. Thus, we adopt the same list of words to 
recognize AI-specific knowledge in the WoS database, which includes the terms: artificial 
intelligence, data mining, and learning algorithm (see Appendix A for a full list of terms). 
 

 
2 A n-gram consists of a list of “n” items from a sample text. For example, in this analysis, we say that “machine 
learning” is a 2-gram.  
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Using the methodology described above, we identified 260,351 documents as AI - out 
of the 38 million possible documents in our WoS database. Thus, although everyone seems 
to be discussing AI, very few have been able to seriously engage with the technology so far. 
To explore this issue further, Figure 1 plots the twenty most frequent keywords associated 
with AI. The histogram is positively skewed with “Neural Networks” being the most frequently 
occurring keyword. This is immediately followed by “Genetic Algorithm”, “Data Mining”, and 
“Support Vector Machine.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Frequency of AI keywords in searched publications. 
Source: Authors’ calculation. 
 
 

It should be noted that we have carried out a thorough and careful stemming and 
cleaning process on our entire list of AI documents. These processes are necessary given the 
fact that inconsistencies are a common feature with any large-scale dataset. Moreover, one 
of the most common difficulties is that different elements actually represent the same thing. 
For example, the same keyword may be reported in a variety of ways (e.g. neural network or 
neural networks or “NN”). For the analysis reported here, we have applied a stemming 
technique to all of the keywords with the aim to minimize duplications. 
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Additionally, we consider a document to be AI if at least one of its keywords matches 
any of our 43 unique n-gram identifiers.3 Therefore, documents which we classify as AI can 
also include non-AI keywords. As such, our final database, which contains only the “AI” 
documents also includes non-AI keywords. Indeed, we expect every document in our 
database to have a mixture of AI-specific keywords, as well as terms that are not related to 
AI. That being said, this is valuable information since it allows us to study the integration of 
AI knowledge across space, time, and subject matter. 
 

3. Data and Methods 
 
3.1. Global Focus 
 

Once we identified the AI documents within our WoS sample, we plotted the total 
volume of AI publications in space and time to obtain a better picture of the evolution of 
Artificial Intelligence. Along these lines, Figure 2 provides a first glance at the growth in the 
production of AI documents by continent over the past three decades. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Number of AI documents by continent. 
Source: Authors’ calculation. 

 
3 Over the period of analysis, the mean number of keywords listed on journal articles remained constant at 4.8. 
Therefore, for an article to be identified as an AI document, one of its keywords would need to match our 
identifier, but the remaining three or four keywords does not. This approach enables us to create a robust 
picture of how AI is beginning to integrate with other research fields.  
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Initially, the number of AI publications grew very slowly, which is not surprising due to 

the novelty of that field paired with uncertainties of how such a radically new technology 
could be applied in the market place. This is evident once we considered that between 1990-
1999 the global number of AI publications was equal to 21,531 - which represents only about 
8% of all documents in our sample and 22% of documents produced in the following decade. 
Nevertheless, even at this primitive stage, it is still possible to identify the Western economies 
of Europe and the Americas as key regional players, whereby they account for 5,632 (26%) 
and 5,555 (25%) respectfully. Finally, although not as prominent in the early years of the first 
period, it is also possible to identify a nascent cluster in Asia (19%).  
 

In the second period (2000–2009) the first ‘real’ surge in AI publications is evident. 
During this time, a total of 95,813 papers were published, signifying an almost five-fold 
increase over the first period. From a path-dependence perspective, Europe and America 
continue to dominate the initial years of the decade, accounting for 28% and 23% respectfully 
However, this position is transformed following the emergence, and thereafter the 
dominance, of Asia. Throughout the decade, the Asian economy accounts for almost half 
(50%) of the global output, and from 2002 onwards reports a doubling of its publication 
output relative to its western counterparts. 
 

Equally important, during this period, AI begins to formalize as a discipline. Frequency 
analysis based on the journals’ keywords (see Section 3.2) indicates that topics such as 
“Neural Networks”, “Machine Learning”, “Genetic Algorithms”, “Pattern Recognition”, “Fuzzy 
Logic” and “Data Mining” began to emerge on documents during this time. More formally, 
these advances served to establish the foundation on which modern AI is based and thus can 
be regarded as setting up the pre-conditions for the final stage. 
 

The third and final stage refers to the years 2010–2016, and it is during this time period 
that the bulk of the data lies. During this stage, we observe a further increase in the 
divergence between Eastern and Western economies. Focusing on the global crisis of 2008, 
we see that Asia was initially impacted by this crisis, but quickly recovered. In contrast, 
whereas Europe and the Americas appeared to be less affected in the years preceding and 
during the crisis, they have struggled to increase their total number of publications since then.  
 
3.2. Country-Level Analysis 
 

Expanding the initial analysis beyond the continental level, it is possible to use the 
authors' affiliations on each WoS document to map the spatial distribution of Artificial 
Intelligence across countries. Doing so enables us to view continents in terms of their 
countries rather than as a collective. To illustrate, Figure 3 (Panels a, b, and c) displays the 
spatial distribution of AI-specific documents across countries for the three time periods 



10 
 

discussed previously. Using this approach, we observe that Europe's dominance in AI is 
partially the result of five countries (United Kingdom, France, Spain, Germany, and Italy), 
which make up nearly 62% of the continent's total output. A similar pattern emerges in Asia, 
where China (47%) clearly dominates while other countries like Taiwan (7%), India (12%), Iran 
(7%), and Japan (7%) also make a noticeable contribution. The same pattern does not emerge 
for the Americas where the United States is continually the primary producer of AI with 70% 
of the continent’s contribution.4 
 

Comparing between periods, we can further observe the path dependency process 
mentioned in the previous section. Namely, those countries with a historical advantage in AI 
production, i.e. those leading the development of AI in our first period, continue to dominate 
in terms of the overall share of documents. Our results, thus, seem to corroborate past work 
in Evolutionary Economic Geography (EEG), which highlights that regional innovation is driven 
by a path-dependent process (Martin and Sunley, 2006, Kogler, 2016). Furthermore, it is in 
line with the findings of Buarque et al., (2020) who showed the same tendency amid the AI-
specific patents of Europe, i.e. those regions that excel in computing technology in the early 
stages of the analysis are also those with the largest share of AI patents in the end period. 
 

On the other hand, our maps show the emergence of Asian economies, China in 
particular, as key players in the scientific development of AI technologies. One might explain 
the rapid rise of China as a by-product of global geopolitics. After all, as China marches to 
become the largest economy in the world, it is only natural that, it will control the 
technologies of the future, e.g. AI. Nevertheless, it is more likely that the growth in China is a 
result of the country's ambitious policies regarding the development of AI (Dutton, 2018). 
Since 2017, when the "New Generation of Artificial Intelligence Development Plan" was 
implemented, China has even invested more in the production of AI for the future than it has 
in the past. Thus, China’s continuous dominance in this technology domain will most likely 
prevail for quite some time. 
 
 
 
 
 
 
 
 
 

 
4 As with any country level analysis the problem with the United States is that its sheer size distorts the 
innovative potential of the individual US States. Given the space constraints here, we do not go into detail as to 
which States in the United States are responsible for its dominance in AI, but future work should engage with 
these questions. 
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(a) 1990-1999 
 

 
 
 
 
 
 
 
 
 
 
 

(b) 2000-2009 
 

 
 
 
 
 
 
 
 
 
 
 

(c) 2010-2016 
 
Figure 3. Distribution of AI documents by country and time period. 
 

Source: The authors; based on Web of Science records derived from the “Science Citation Index 
Expanded” and the “Conference Proceedings Citation Index”. GIS shapefile source is EUROSTAT. 
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3.3. Country Collaboration Network 
 
Measuring the distribution in time of AI documents across countries is surely 

informative. Nonetheless, to obtain a better picture of the creation and diffusion of AI, we 
also need to account for international collaborative efforts. The seminal contribution of 
Wuchty et al., (2007) highlights how journal articles are increasingly found to be the result of 
collaborative efforts involving teams of researchers. Taking an Evolutionary Economic 
Geography stand, one possible reason for their findings is that there is an upper echelon 
limiting the extent an individual scientist, firm, region, or country can create all the knowledge 
they require internally; this seems to be particularly valid for the creation of general purpose 
or complex technologies whose production is the result of the recombination of multiple 
parts (Whittle, 2019). Besides, Buarque et al. (2020) have further commented that “AI is best 
developed when well connected to other research and development activities within the 
larger regional knowledge production ecosystem” (p.177). From this perspective, one might 
expect that collaboration between institutions, regions, and countries is at the heart of 
developing Artificial Intelligence knowledge. Further, to understand the creation of AI, it is 
paramount that we study cross-country collaboration networks in our WoS subsample. 
 

Along these lines, Figure 4 uses the information on the co-location of authors listed 
within the same WoS document to generate a global collaboration network for AI. Countries 
are coloured according to the continent they belong to, whereas their size indicates the 
number of AI publications in that country.5 To draw the networks, we used a force-directed 
algorithm to ensure the position of the nodes is proportional to their graph distances. Hence, 
from this network, we can deduce that countries that are closer together collaborate more 
frequently than those further apart. Moreover, as one might expect, the major AI producers 
we identified in the last sections (e.g., China and the United States), also occupy the centre of 
the collaborative network.6 That is, these big AI producers also are among the most influential 
nation-states in the international collaboration network.  
 

Beyond this, we observe that a large proportion of international collaboration occurs 
between countries within the same continent. Cultural and social arguments from economic 
geography may further help to explain these trends. Particularly, we expect that 
collaborations and interactions are more likely to occur between agents (e.g., individuals, 
firms, countries) that share the same language, customs, and routines (Boschma, 2005). 
Finally, we must acknowledge those countries scattered on the periphery of the collaboration 
network who have yet to establish a serious footing in AI and may have only published a few 
articles. Many of these are either African (turquoise) or those smaller Asian (red) economies. 

 
5 Americas = Green, Asia = Red, Europe = Yellow, Oceania = Navy and Africa = Turquoise. 
6 One potential reason why Europe might appear as less innovative to America (which is in contrast to Figures 1 
and 2) is because Europe is a collection of many individual countries whereas the Americas are largely dominated 
by the United States. 
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From an evolutionary perspective, it will be interesting to see how these economies develop 
over the coming years and whether they will enter the global AI collaboration network.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Global AI science/knowledge collaborator network. 
Source: Authors’ calculation/illustration. 
 

3.4. Evolution of Keywords 
 

As a methodological axiom, co-occurrence analysis is a valuable research strategy. It 
has found residence in a wide variety of fields, including economic geography (Kogler et al., 
2013), regional development (Hidalgo et al., 2007), and scientometrics (Leydesdorff, 2007). 
Likewise, with the advent of big-data, co-occurrence analysis based on the frequency of 
(key)words that occur in the same publication has also been identified as a burgeoning 
research field. Indeed, while earlier research sought to measure similarity across authors and 
fields using the co-citations networks (McCain, 1990), more recent analysis has drawn on 
advances in text-mining and text-analytics to map knowledge structures using the co-
occurrence of words. These developments are particularly helpful when tracing the evolution 
and intellectual structures of emerging new fields, such as the Internet of Things (Yan et al., 
2015) and Infometrics (Sedighi, 2016). Further, the methodology can also be used to produce 
bibliometric data on particular journals (Ravikumar et al., 2015), and to produce systematic 
literature reviews (Zhu et al., 2018).  
 

Following this line of inquiry, Figure 5 illustrates the keyword co-occurrence network 
for the AI documents in the sample. It splits the analysis into the previously discussed periods 
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in order to examine the changing research frontier of Artificial Intelligence. Here, each node 
represents a keyword with its size being proportional to the frequency at which it occurs in 
journal articles. Like before, when drawing these networks, we ensured that keywords that 
frequently co-occur across our AI data sample are closer together than those that do not. 
Doing so reveals a core-periphery structure with the most focal concepts at the centre. At 
last, for a better visualization, the ten most common nodes are highlighted in red and have 
been labelled. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) 1990 – 1999 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 2000 – 2009 
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(c) 2010 – 2016 
 
Figure 5. The changing research frontier of AI and the evolution of AI keywords. 
Source: Authors’ calculation/illustration. 
 
 

Although Artificial Intelligence initially developed slowly (see Section 3.1), it still 
produced a very dense network of approximately 1,600 nodes and 32,000 edges. A plausible 
explanation is that, due to its infancy, many researchers were actively experimenting and 
trying to find applications for such a radical technology. In Figure 5(a), the three largest nodes 
are Neural Network, Genetic Algorithm, and Pattern Recognition, which, to this day, are 
considered frontier concepts in the field. Furthermore, other concepts such as Optimization, 
Fuzzy Logic, and Classification have also begun to emerge - although in a far smaller capacity. 
Like before, these concepts are also inherent to AI and, in particular, its trial-and-error 
processes. Lastly, whilst it is often very informative to know which nodes are present, it is 
equally valuable to know which nodes have yet to appear. To these ends, concepts relating 
to Decision Trees, Data Mining, or Unsupervised Learning are still missing at this first stage. 
 

Moving to Figure 5(b), what immediately becomes clear is that there are significantly 
more nodes. Indeed, even after filtering we observe 400 more nodes than previously, which 
indicates that the network has grown. Likewise, we observe a significant shift regarding how 
said networks are wired. That is, comparing the two periods, not only the keyword co-
occurrence network has increased in size, but it also has become denser and more 
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concentrated. As with the period before, Neural Network remains the largest node, which is 
unsurprising given its focal positioning in the study of artificial intelligence (see Figure 1). 
Other noticeable changes include the introduction of keywords like Data Mining, Support 
Vector Machines, and Reinforcement Learning. Colloquially, these tokens are commonly used 
to explain Artificial Intelligence, so it is not that surprising they appear here. Beyond this, 
there was also an obvious concentration around the concepts of Fuzzy Logic, Classification, 
and Optimization, which again have a strong resonance with AI. 
 

However, perhaps the most important shift between the two time periods was the 
concentration around the keyword Genetic Algorithm. Although inherently different from 
Neural Network, the two terms co-occur rather frequently on the same documents.7 Indeed, 
throughout the period in consideration, a little over 2,000 documents listed both terms as 
keywords - which represents nearly 10% of all "Genetic Algorithm" articles in the period. In 
turn, this event highlights the potential for combining different AI methods to achieve faster 
and better algorithms, particularly for these two wide-spread methods. 
 

Moving to the last stage, one can see that the network has become increasingly dense. 
This is largely because while the shift from Figure 5(b) to 5(c) reports only a small increase in 
the number of nodes, it sees a massive increase in the overall number of edges, i.e. 
connections between nodes, which now stands at over 157,000. The surge in edges implies 
that AI has become increasingly intertwined with other disciplines. Otherwise stated, the 
theory and methods which traditionally have underscored AI are now finding residence in 
new areas, including mechanical engineering, medicine, finance, and automation. These 
changes are the driving factors behind the self-driving car, smart home technologies, and 
mechanical medicine. Finally, keywords such as Neural Network (50,237) Genetic Algorithm 
(26,242), and Support Vector Machine (15,250) remain vitally important. We also see they are 
now produced closer together in the network; that is, they appear together on the same 
publications, which is very different than observed in the initial time period where they were 
distinct and further apart. 
 

3.5. Regional Focus 
 

In this final section, we shift the focus of our analysis to the subnational level. That is, 
we will focus on the temporal evolution and spatial distribution of AI across 318 European 
NUTS2 regions. In this context, Figure 6 compares the total number of AI articles in our 
dataset over the NUTS2 areas in the initial period 1 (1990-1999) compared to the final period 

 
7 Neural networks are a sub-form of deep-learning where the algorithms are inspired by the structure of the 
human brain. In short, neural networks are trained to identify patterns in data (text, audio, visuals etc.) and then 
predict outputs for a new set of similar data. Genetic Algorithms on the other hand reflect the processes of 
natural selection where the fittest mutations are selected for producing the next generation.  
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3 (2010-2016). Supplementary information about the top AI producing regions of Europe is 
also provided in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) 1990 – 1999 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 2010 – 2016 
 
Figure 6. The spatial and temporal evolution of Artificial Intelligence science across European 
regional economies. 
Source: Authors’ calculation/illustration 
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Surprisingly, Figure 6(a) shows that most regions appear to have had an early start 

publishing in AI. During the first period, the median number of AI documents was 68, which 
in part illustrates the technology’s novelty. At the same time, it is possible to identify some 
early AI “hotspots” - with the Île de France (FR10) appearing as a driving force. By the same 
token, there are clusters of activity in the South-East of England (UK13), Northern Italy (ITC4), 
and in Central Spain (ES30).  
 

Moving between Figures 6(a) and 6(b), several differences are immediately apparent. 
Early hotspots like Île de France, Madrid, Lombardy, and London retained their status as 
leaders. However, new regions have emerged indicating a restructuring among the most 
influential AI producing regions.8 

 
Table 1. Top AI Producing Regions 

 
NUTS2 Region Period 1 NUTS2 Region Period 3 

Île de France (FR10) 250 Île de France (FR10) 1,516 
Lombardia (ITC4) 127 Madrid (ES30) 1,264 

Inner London – West (UKI3) 118 Andalucía (ES61) 1,123 
Madrid (ES30) 101 Inner London – West (UKI3) 1,021 

South Yorkshire (UKE3) 96 Cataluña (ES51) 863 
South Holland (NL33) 92 Norte (PT11) 765 

West Midlands (UKG3) 91 Lombardia (ITC4) 714 
Rhône-Alpes (FR71) 87 Fermo (ITI4) 684 

Southern West. Scotland (UKM3) 84 Rhône-Alpes (FR71) 662 
Attica (EL30) 83 Mazowieckie (PL12) 645 

 
Source: Authors’ calculation 
 
 

More generally, the median number of AI documents per region rose from 68 to 344, 
which represents nearly a fivefold growth. Further still, this rise is potentially indicative of 
achieving a critical mass across both time and regions. Indeed, beyond the hotspots listed in 
Table 1, many regions are actively attempting to establish themselves as centres of excellence 
and as key players in the production of AI in Europe. Visually, Dublin (IE02), South Holland 
(NL33), Eastern Scotland (UKM2), and Oberbayern (DE21) have all moved into the foreground 
of scientific AI research, despite their weak starting point.  

 
8 The results concerning the spatial distribution of AI scientific knowledge production across European regions, 
in particular for period 3 (2010-2016), are not necessarily what we would have expected at the onset based on 
prior research on the distribution of AI technical knowledge production (Buarque et al., 2020).  We’ve conducted 
some further investigation into the validity of these results, e.g. all records for region PT11 (Portugal, North) 
were reviewed manually to ensure consistency in our geocoding approach, which confirmed the findings. 
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Nonetheless, one must be careful when interpreting the results above. Foremost, 

because we are using the total number of AI documents, surely there are other decisive 
factors behind the patterns observed. Namely, Ile de France - our chief AI producer - is also 
the largest metropolitan area in the continent. It has the largest population density, the most 
researchers and academic publications, as well as more patents and firms. Thus, declaring the 
region as the AI hotspot in Europe seems premature. Indeed, if we consider how innovation 
scales with the urban population, it might just be that Ile de France is an average AI producer 
(Bettencourt et al., 2010).  

 
Still, we believe the table and graphs above do reveal worthy patterns. Continuing 

from the above paragraph, the largest NUTS2 economies in Europe seem to concentrate most 
of the AI production on the continent. These results are perhaps unsurprising given those are 
the places with the most resources to invest in the development of this nascent technology; 
but, it also mirrors recent evidence that academic research “concentrates disproportionately 
in large cities” (Balland et al., 2020, p.248).  
 

However, in contrast with the data provided by Buarque et al. (2020) which uses 
patents, we find that scientific publications in Artificial Intelligence are far more diffused 
throughout the continent. Smaller regions, and those often considered marginal in the 
European market, are producing a lot more scientific knowledge on AI than one might expect 
from the patent data. In turn, this could reveal inherent differences on how far and fast 
scientific or practical knowledge travels.  
 

While the above paragraphs describe the distribution of AI documents in Europe, the 
present analysis seeks to go beyond this and examine how AI-specific knowledge connects to 
other sectors of the regional economy. That is, we wish to estimate how AI is embedded in 
the local knowledge-producing and innovative environment. Since many AI-promoting 
policies seek to specifically develop with an eye towards multiple commercial products and 
processes (Dutton, 2018), we need to understand how AI interacts with other domains of 
knowledge. 
 

To construct a measure of AI embeddedness, we follow the approach introduced by 
Kogler et al., (2013; 2017) and produce a regional knowledge space for each European region. 
Using data contained in patent documents, these authors discern a measure of technological 
relatedness based on the co-occurrence of “Cooperative Patent Classification” (CPC) classes. 
Focusing on the U.S. metropolitan areas, they discovered a link between higher levels of 
technological relatedness and faster rates of patenting per worker. In a subsequent analysis, 
Rigby (2015) found that technologies related to a region's pre-existing knowledge were more 
likely to enter the said region than those that were further apart from the region's expertise. 
Since then, geographers and regional scientists have applied these general principles to 
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examine the innovative ability of cities, regions, and countries using a variety of indicators 
(see Whittle and Kogler, 2020 for an overview of these methods).  
 

Nonetheless, for the present examination, we are particularly interested in the recent 
works by Feldman et al., (2015) and Buarque et al., (2020). The first examined the diffusion 
of rDNA technology and illustrated how cognitive and geographical proximity affects the 
spread of this revolutionary method. Whereas Buarque et al., (2020) illustrated how 
bibliographical analysis alongside embeddedness studies can be used to measure the creation 
and integration of Artificial Intelligence in Europe.  
 

However, despite their value these above contributions have exclusively used patent 
data to compute the innovative performance of regions. Whilst earlier research has 
recognized patents as an excellent proxy for innovation, especially on a regional scale (Acs et 
al., 2002), they also have significant limitations. Particularly, it has been argued that patents 
are the result of R&D and therefore reflect the innovative output potential of a region. In turn, 
we wish to study more succinctly the inputs of knowledge creation. To this end, by looking at 
academic publications, which form the bedrock on which many patents are created, we have 
a more accurate picture of the creation and diffusion of AI in the regional economies.  
 

Using detailed information contained within each journal article, we can produce a 
scientific space, a graph that maps the co-occurrence of keywords across our full stock of 
documents. Every article has at least one keyword, but most have between four and five. 
These keywords are signifiers and provide a snapshot of the document’s underlying 
knowledge. Thus, by examining the frequency by which individual keywords occur together 
in our WoS data sample, we can generate individual matrices of how related these AI 
keywords are to one another. Namely, as we did for the complete sample of AI documents 
(Section 3.2), we can assume that keywords that often co-occur together are more related 
than those that do not.  
 

Hence, we prepared a visual graph of the AI scientific space for all 318 European 
regions in our sample. To be specific, we used all the documents flagged as Artificial 
Intelligence for each region-period pair. Next, we plotted the data from these documents in 
a network, where each keyword is a node, and each time that two keywords are listed on the 
same article an edge is created between the two nodes. Our network is then constructed by 
minimizing the edges’ length, with more weight given to the most traversed links. As such, 
the region-by-region optimization places the most frequently used and tightly integrated 
keywords at the centre of its scientific space. 

 
To understand how the production and integration of AI knowledge varies across 

Europe, we collected several network characteristic datasets for the entire region-period 
scientific space. That is, we measured how dense, how clustered, how centralized, and how 
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long it takes to transverse each AI regional network. In turn, these statistics allow us to infer 
how embedded Artificial Intelligence knowledge is across the European regions. Particularly, 
we assume that where the AI scientific space is denser and longer, the technology is more 
rooted in the local innovation environment, as it seems to be more connected to other 
valuable sectors.  
 

Following, Figure 7 shows the distribution of four network statistics obtained from the 
AI scientific spaces. As one may expect, the European regions vary largely in respect of their 
“AI embeddedness.” Indeed, it seems like AI-specific knowledge is far more centralized in 
some regions than others. Overall, the region's AI scientific space is more concentrated in a 
few keywords, and it lacks some potential applications and alternative methods. However, on 
the other hand, some regions have a denser network, thus demonstrating a more connected 
AI knowledge space. The result is not surprising in light of research by Buarque et al., (2020), 
who measured a very skewed distribution for the AI centrality index in patents.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. AI Science Space Network Statistics. 
Source: Authors’ calculation/illustration. 
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Given the significant divergence across the European regions, one might propose to 
examine how the level of AI embeddedness relates to the production of new AI products. To 
this point, Buarque et al., (2020) sought to expose the correlation between the number of AI 
patents and their relative importance for the region's knowledge space. Accordingly, they 
demonstrate “there is a positive correlation between those regions where AI patents are 
most prevalent and those for which AI is most embedded” (p.186). 

 
We must note, however, that our methodology diverges from Buarque et al., (2020) 

in one vital detail. They estimated the value of AI patents in the regional knowledge-space by 
artificially removing said patents when building their networks and observing the impact of 
this exclusion on the network characteristics. That is, they measure how the absence of AI 
patents affects the region's knowledge space centrality and efficiency. In contrast, in the 
present contribution we are exclusively illustrating the scientific space derived from AI 
documents. We only consider the co-occurrence of keywords within articles that we 
identified as AI, and so we don't estimate the region's overall scientific space; i.e. focus is only 
directed at the AI-specific knowledge. As such, our methodology provides a different and 
original measure of how embedded or diffused AI knowledge is in the regional knowledge-
producing capacity.  
 

Further, we also highlight that examining the correlation between AI production and 
its embeddedness is beyond the scope of this analysis. Albeit, to obtain a better illustration 
of the uses of our network statistics, Figure 8 illustrates two regional AI science spaces for the 
period 2010-2016. On the top, we have Dublin (IE02) and on the bottom Vienna (AT13). For 
comparative purposes both regions belong to high-income countries, have a similar number 
of universities, and enjoy a very high standard of living. As depicted above, both regions are 
significant producers of artificial intelligence and have roughly the same amount of journal 
articles, IE02 (422) and AT13 (381). However, despite their commonalities, these regions 
produce very different network structures with AI occupying a more central position in 
Dublin.  
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(a) Dublin (IE02) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Vienna (AT13) 
 
Figure 8. Science Space of AI. Red nodes indicate AI keywords. 
Source: Authors’ calculation/illustration. 
 
 

In terms of the sheer number of AI-specific keywords, Dublin and Vienna are once 
again very similar. Of the 36 keywords9 listed by the WIPO (2019), Vienna has published in 23 
of them, whereas Dublin published in 26. Although the volume of documents and keywords 

 
9 The World Intellectual Property Organization (WIPO, 2019) provides 43 n-grams, which we used to identify the 
AI documents. We grouped the different n-grams into 36 keywords. Namely, we grouped together terms that 
refer to the same or very similar method - such as, “supervised training” and “supervised learning.” 
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in a region is indicative of its capacity to produce AI knowledge, in order to understand the 
region's full potential we must also account for the links between keywords and the 
interconnections among the different kinds of knowledge produced. Along these lines, 
comparing the two networks shown in Figure 8, we first observe that Dublin’s scientific AI 
space has more nodes overall and is denser than Vienna’s. That is, visually, we can conclude 
that Dublin combines more industries and sectors into its AI network; thus leading to a more 
diverse and applied technology when compared to Vienna. 

 
Furthermore, in both networks under consideration, we highlight "Neural Networks" 

and "Genetic Algorithms" as the most traversed nodes, i.e. the most relevant keywords. For 
Dublin, you can see that these keywords are closely connected, indicating they frequently 
occur in the same publications. Moreover, these keywords are also tightly surrounded by 
other nodes (both AI and Non-AI), further demonstrating their re-combinatorial potential. 
Recall from the previous sections how AI has become increasingly intertwining with other 
sectors of the economy (Frey and Osborne, 2017) and technological frontiers (Buarque et al., 
2020); it is precisely this recombination that is driving AI policy and regional development 
(Clifton et al., 2020; Acemoglu and Restrepo, 2020). 

 
Conversely, whilst "Neural Network" and "Genetic Algorithm" are also the most 

connected nodes in Vienna's network, they are not as embedded in the region's scientific 
space. Thus, it seems that the region has been unable to connect distinct research frontiers 
in AI, which significantly hampers its ability to harness the capabilities of Artificial Intelligence. 
Insights from Evolutionary Economic Geography (Kogler, 2016) further substantiate this 
point, illustrating that though Vienna might have the necessary building blocks, it fails to 
connect them in a meaningful way and as a result their network remains sparsely connected. 
 

4. Conclusion  
 

Artificial Intelligence is currently one of, if not the most, widely debated science-
technology field in business and policy circles, and the rush to develop and market AI related 
technology is palpable. Since its emergence in the early 1990s, governments around the world 
have been keen to develop strategies in order to harness and capitalise on its obvious societal 
and economic potential.  In this context, the purpose of the present contribution is to provide 
insights into the spatial and temporal evolution of AI scientific knowledge production over 
the past three decades. Following this vision, the objective we set out with was to make a 
series of connected contributions to the relevant literature, both theoretical and empirical, 
all of which should inspire and support further work on this relevant topic.  In particular, the 
study provides insights into three aspects that should advance this line of inquiry: 
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Firstly, to overcome a lack of precise definition, we augmented the methodology 
developed of Buarque et al., (2020) to identify AI-based journal articles and indexed 
approximately 260,000 such documents. To establish a solid foundation, we began by 
conducting an exploratory analysis in order to examine the path-dependence of countries 
(continents), as well as to identify the jurisdictions that were the leading AI producers 
throughout each period in time. 

 
Secondly, utilizing the keywords listed on journal articles we examined the changing 

research frontier of AI. Through a detailed analysis of their co-occurrence, it was possible to 
explore how AI is simultaneously becoming more concentrated and diverse. Concentrated by 
virtue of the fact that the core concepts, i.e. neural networks, genetic algorithm and machine 
learning, that define AI are appearing more frequently on journal articles over time. Diverse 
in terms of the number of non-AI keywords that are also appearing alongside them. This 
indicates AI’s recombinatory potential whereby theories and methods that traditionally have 
underscored and defined core AI research are now also finding residence in new areas, 
including mechanical engineering, medicine, finance, and automation. As mentioned 
previously, it is precisely these principles that have led to the creation of the self-driving car, 
smart home technologies, and mechanical medicine. 

 
Finally, we positioned these AI documents into the scientific knowledge space (Kogler 

et al., 2013; 2017) of to two capital EU regions and developed a methodology for describing 
how embedded AI is in these regions. The results reveal that although Dublin (IE02) and 
Vienna (AT13) are very similar in terms of their overall number of publications and AI 
keywords, by the end these two places produce very different scientific knowledge 
production networks. A preliminary finding here is that AI knowledge production is more 
central in Dublin’s network, and as such, that Dublin might be better equipped to further 
harness its capabilities. On the other hand, whilst Vienna has the necessary building blocks to 
potentially exploit AI scientific knowledge, it has yet to connect these in a meaningful way to 
its broader network structure, i.e. other non-AI subjects. 

 
In terms of next steps, an obvious direction would be to extend the methodology that 

was utilized in this study and to include information embedded in the relevant publications 
regarding authors and their institutions. The addition of this micro-dimension would permit 
a more thorough and detailed analysis of both the creation and diffusion of AI focusing 
specifically on those actors involved. In doing so, it would be possible to analyse not just which 
countries are collaborating, but also the institutions and individuals embedded in these 
countries. Such an analysis would be of critical importance in identifying those institutions 
that are at the forefront of AI scientific knowledge production and could be used by policy-
makers and funding agencies when targeting specific investment opportunities. Similarly, by 
focusing on authors, it would possible to discern (at the institutional/departmental level) who 
is collaborating with whom? For example, if a researcher in computer science, i.e. AI research, 
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is engaged in a collaborate process with a colleague in medicine, the expectation then would 
be that scientific AI knowledge gets applied to a specific problem, and in turn provides inputs 
to generate a solution.  It is these inter-disciplinary collaborations that provide the 
opportunity to produce recombinant knowledge with the potential to push forward 
technological change and the research frontier in the science/technology knowledge space 
(Kogler et al., 2013; 2017; Kedron et al., 2020). 

 
This point also speaks more broadly to a crucial methodological contribution in the 

present investigation. In particular, we further substantiate the viability of text-matching and 
text-analysis methodologies for identifying and analysing the creation and diffusion of science 
and technologies when they are not easily identifiable by traditional means. Haščič and 
Migotto (2015) provides an additional example that follows this approach where a text-
matching algorithm is employed in order to identify “green” technologies. We hope that the 
present study will inspire other scholars to further explore AI scientific knowledge production 
as well as other non-standardised technology fields at the intersection of traditional domains. 
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6. Appendix A 
 

Table 2(a) List of AI Keywords 
artificial intelligence computation intelligence neural network bayes network 
bayesian network Rankboost semi-supervised connections decision model 
deep learning genetic data mining semi-supervised training inductive program 
machine learning natural language generation natural language generation reinforcement learning 
unsupervised learning unsupervised training semi-supervised learning algorithm 
inductive logic expert system random forest decision tree transfer learning 
learning algorithm learning model support vector machine adaboost 
gradient tree boosting Chatbot natural language processing xgboost 
logistic regression stochastic gradient descent multilayer perceptron latent semantic analysis 
latent dirichlet allocation multi-agent system hidden markov model fussy logic 
Stemming and wildcards were applied to all terms. 
Source: (WIPO, 2019). 

 


