15 research outputs found

    Pleistocene eruptive chronology of the GölcĂŒk volcano, Isparta Angle, Turkey. Chronologie des Ă©pisodes volcaniques plĂ©istocĂšnes du volcan GölcĂŒk, Angle d’Isparta, Turquie

    Get PDF
    In the Eastern Mediterranean region, the Isparta volcanic belongs to the post-collisional alkali-potassic to ultrapotassic magmatism active since the Miocene in this part of the Anatolian peninsula from Afyon to Isparta. In the so-called Isparta Angle (IA) the magmatism is contemporaneous with an extensional regime intiated during Late Miocene and active throughout the Pliocene and Quaternary. Previous K/Ar dating performed on lavas suggested that potassic-ultrapotassic magmatism occurred between 4.7 to 4 Ma. However, a more recent (Quaternary) activity of the GölcĂŒk volcano is evidenced by the present-day morphology and field evidence although it remained undated and poorly studied so far. Field mapping and new radiometric data indicate that the main volcano-forming stages of the GölcĂŒk volcano consist of three main eruptives cycles. (1) Cycle I, represented by more than 200m-thick pyroclastic flow deposits occasionally separated by paleosoils and corresponding to caldera-forming ignimbritic eruptions. (2) Cycle II, consisting of tephriphonolite lava dome-flows extruded throughout the caldera and currently found along the rim of the present crater. (3) Cycle III made up of tuff-ring deposits related to several phreatoplinian eruptions of a maar-type volcanic activity. This youngest cycle ends with trachytic domes protruding within the maar crater. Unspiked 40K/40Ar dating on mesostasis was performed on lavas (tephriphonolites and trachytic domes), and complemented by preliminary 40Ar/39Ar data on tephra deposits (sanidine). Our preliminary results show that the entire activity of GölcĂŒk volcano took place during the Pleistocene and was disconnected from the older Pliocene volcanism. This volcanic activity can be considered as a new volcanic cycle, starting (Cycle I) around 200 ka with major explosive, regional-scale, events represented by at least six ignimbrites sheets. Cycle II occurred between 115 ± 3 ka to 62 ± 2 ka with probably some associated tephra deposits. Tuff-ring of Cycle III formed from 72.7 ± 4.7 ka to 24 ± 2 ka. The associated phreatoplinian eruptions have almost entirely destroyed the previously formed flow-dome. This latest activity corresponds to several volcanic crises as illustrated by the two domes protrusions separated by about 30 ka. The volcanic history of GölcĂŒk ceased around 24 ka ± 2 ka, but the periodicity of eruptive events appears to be long and complex. Currently, the volcano is at rest, but there is no doubt that the Isparta town (more than 120 000 people) built on top of the most recent tephra falls is exposed to a major volcanic hazard in the future.En MĂ©diterranĂ©e Orientale, la rĂ©gion active d’Isparta est le siĂšge d’un magmatisme alcalin liĂ© Ă  la distension affectant cette partie de la PĂ©ninsule Anatolienne depuis le MiocĂšne supĂ©rieur. Le volcanisme PliocĂšne est alcalin et trĂšs potassique, depuis des magmas lamprophyriques Ă  lamproĂŻtiques, jusqu’à des tĂ©phriphonolites et des trachytes. La construction du volcan GölcĂŒk au sud d’Isparta marque le dĂ©but d’un nouveau cycle Ă©ruptif aprĂšs une longue pĂ©riode d’arrĂȘt et d’érosion. L’étude morpho-structurale du volcan couplĂ©e aux datations 40K/40Ar sur lave et 39Ar/40Ar sur monograin de feldspath-K indique une histoire Ă©ruptive complexe, nettement plus jeune que l’activitĂ© antĂ©rieure (PliocĂšne). Ces rĂ©sultats prĂ©liminaires montrent que l’activitĂ© volcanique du GölcĂŒk est situĂ©e dans le PlĂ©istocĂšne supĂ©rieur (PalĂ©olithique) entre environ 200 ka et 24 ka. Trois cycles volcaniques majeurs sont reconnus : (1) Cycle I dĂ©butant vers 200 ka avec des Ă©ruptions ignimbritiques majeures avec un ensemble de coulĂ©es pyroclastiques trachytiques comblant les palĂ©o-vallĂ©es ouvertes dans les formations sĂ©dimentaires et les formations volcaniques d’ñge pliocĂšne ; (2) Cycle II avec un Ă©pisode effusif de faible importance succĂšde entre 115 ± 3 ka et 62 ± 2 ka Ă  l’activitĂ© explosive initiale avec la mise en place d’un Ă©difice central constituĂ© de dĂŽmes-coulĂ©es tĂ©phri-phonolitiques ; (3) Cycle III entre 70 ka et 24 ka, l’activitĂ© devient phrĂ©atoplinienne et suit de prĂšs le cycle prĂ©cĂ©dent. Le dynamisme Ă©ruptif phrĂ©atomagmatique est celui d’un maar formĂ© d’un large cratĂšre d’explosion entourĂ© d’un anneau de tufs. La derniĂšre crise volcanique se termine par l’extrusion de plusieurs dĂŽmes de trachyte dans le cratĂšre et de tĂ©phras associĂ©s, de nouvelles coulĂ©es pyroclastiques se mettent vraisemblablement en place vers le nord-ouest. Les donnĂ©es de terrain et les Ăąges 40Ar/39Ar disponibles indiquent que ces derniĂšres manifestations (construction du maar) sont trĂšs rĂ©centes et sub-contemporaines du dernier niveau de retombĂ©es ponceuses sous les immeubles de la ville et des dĂŽmes de lave intra-caldeira. Cet Ăąge rĂ©cent est confirmĂ© par un Ăąge 14C obtenu sur des bois carbonisĂ©s. La morphologie du volcan actuel est relativement bien conservĂ©e, malgrĂ© l’érosion trĂšs active qui remodĂšle dĂ©jĂ  partiellement les pentes. La reprise Ă©ventuelle de l’activitĂ© du volcan constituerait un risque majeur Ă  l’échelle de la rĂ©gion et en particulier pour la ville d’Isparta Ă©tablie au pied de l’édifice, notamment sur les coulĂ©es pyroclastiques et les retombĂ©es ponceuses les plus rĂ©centes

    Le plutonisme de tendance alcalin potassique de Stara Planina, Bulgarie (étude pétrologique des complexes de Buhovo-Seslavtzi, Svidnya et Shipka)

    No full text
    Le magmatisme du Paléozoïque supérieur est à l'origine des trois plutons d'affinité potassique dans Stara planina, Bulgarie. Le caractÚre post tectonique des roches alcalines potassiques de Svidnya, Buhovo-Seslavtzi et Shipka est motivé par leur structure isotrope, restée intacte pendant les déformations reliées aux processus orogéniques. La cristallisation du magma des trois plutons s'est déroulée à faible profondeur, à des pressions entre 2 et 3 kbar pour les plutons de Svidnya et Buhovo-Seslavtzi et entre 5 - 7 kbar pour les roches de Shipka. Les roches de trois plutons sont généralement intermédiaires des compositions syénitique et monzonitique. L'évolution est orientée vers la formation d'un résidu fortement hyperalcalin, avec cristallisation des minéraux mafique alcalins. Les roches présentent une tendance potassique nette, avec enrichissement en éléments Th, U Rb, Ba, Sr, Cs trÚs fort. Avec la tendance agpaïtique les teneurs en éléments Zr, Nb, Ta, TR deviennet importantes, Les particularités géochimiques des roches suggÚrent la formation de magma produit par un taux de fusion bas dans un manteau à grenat ou spinelle, métasomatiquement modifié. La modification métasomatique de la péridotite mantélique s'est déroulée avec l'introduction de matériaux d'origine crustale et de fluides au cours de la subduction / collision. Les particularités géochimiques des roches et le caractÚre de la distribution des éléments sur les diagrammes multicomposants indiquent l'aspect orogénique du magmatisme.Upper Palaeozoic magmatism in Stara palnina produced three potassic alkaline plutons: Svidnya, Buhovo-Seslavtzi and Shipka. The post-tectonic character of the rocks is motivated by their isotropic fabrics, stayed unaffected during the deformations related to orogenic processes. The magma crystallization occurred between 2 - 3 kbar for Buhovo-Seslavtzi and Svidnya complexes and between 5 - 7 kbar for Shipka complex. The rocks from the plutons are of intermadiate composition, and monzonite and syenite varieties dominate. The evolution is orientated toward the formation of strongly peralkaline residu, with crystallization of alkaline mafic phases. The rocks show potassic tendency with significant enrichment in Th, U, Rb, Ba, Sr and Cs. With the agpaitic tendency the content of Zr, Nb, Ta, REE becomes important. The geochemical particularities suppose the magma formation by the low degree melting of metasomatised mantle with garnet or spinel. The metasomatic modification of mantle peridotite occurred by the introduction of crustal components and fluids during the subduction/collision. The geochemical particularities of the rocks and the distribution of element in the spider-diagrammes favor the orogenic character of the magmatism.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    De la justesse des Ăąges K-Ar : exemple de la datation de deux dĂŽmes trachytiques du GölcĂŒk (Turquie)

    No full text
    International audienceLe GölcĂŒk, situĂ© au sud de la ville d'Isparta (Turquie), est un volcan composite, construit en trois phases durant le PlĂ©istocĂšne (Alici et al., 1998 ; Platevoet et al., 2008 ; Elitok et al., 2010). Les Ă©tudes rĂ©alisĂ©es par Platevoet et al. (2008) et Schmitt et al. (2014) se sont intĂ©ressĂ©es en partie Ă  la datation de deux dĂŽmes mis en place au sein de la caldeira du GölcĂŒk. Les Ăąges K-Ar (Platevoet et al., 2008) de ces dĂŽmes trachytiques (KĂŒĂ§ĂŒkçesme Tepe : 52 ± 2 ka et Pilav Tepe : 24 ± 2 ka) sont significativement plus vieux que les Ăąges (U-Th)/He sur zircons obtenus par Schmitt et al. (2014) Ă©tant respectivement de 14,1 ± 0,5 et de 12,9 ± 0,4 ka. Nous avons testĂ© l'hypothĂšse proposĂ©e par Schmitt et al. (2014) qui est celle d'un excĂšs d' 40 Ar * faussant les Ăąges K-Ar en datant ces mĂȘmes trachytes par la mĂ©thode 40 Ar/ 39 Ar. Nos Ăąges 40 Ar/ 39 Ar sur mĂ©sostase confirment les Ăąges (U-TH)/He sur zircons et datent l'activitĂ© magmatique la plus rĂ©cente du GölcĂŒk Ă  13,4 ± 0,3 ka. Nous proposons que l'erreur sur les Ăąges K-Ar soit liĂ©e Ă  un excĂšs d'argon probablement portĂ© par des clinopyroxĂšnes associĂ©s Ă  la mĂ©sostase. ABSTRACT QUESTIONING THE ACCURACY OF K-AR AGES: EXAMPLE OF THE DATING OF TWO TRACHYTIC DOMES FROM THE GÖLCÜK (TURKEY) The GölcĂŒk volcano, located south to the city of Isparta (Turkey), built-up in three stages during the Pleistocene (Alici et al., 1998; Platevoet et al., 2008; Elitok et al., 2010). A reliable and accurate dating of the most recent volcanic stage is crucial to assess the potential hazards for the infrastructures and the populations. In this context, Platevoet et al. (2008) and Schmitt et al. (2014) applied respectively the K-Ar and the (U-Th)/He methods to date the youngest volcanic stage of the GölcĂŒk and obtained contrasted results. Based on the K-Ar dating of two trachytic domes (KĂŒcĂŒkcesme Tepe et Pilav Tepe), the post-caldera stage is dated between 52 ± 2 ka and 24 ± 2 ka by Platevoet et al. (2008). When the (U-Th)/He method is applied on zircons from the same trachytic domes, Schmitt et al. (2014) date the post-caldera stage around 14.1 ± 0.5-12.9 ± 0.4 ka. Schmitt et al. (2014) proposed that the K-Ar ages were erroneously too old, probably because of excess 40 Ar*. We have tested this hypothesis by dating groundmass splits of these trachytes using the 40 Ar/ 39 Ar method. Our 40 Ar/ 39 Ar ages reproduce the (U-Th)/He ages on zircons and date the youngest volcanic stage of the GölcĂŒk at 13.4 ± 0.3 ka. Confirming the hypothesis of Schmitt et al. (2014), we propose that the error on the K-Ar ages is related to excess argon probably trapped in small fragments of clinopyroxene attached to the groundmass

    Rhyolites of the Mbépit Massif in the Cameroon Volcanic Line: an early extrusive volcanic episode of Eocene age

    No full text
    International audienceThe MbĂ©pit Massif, one of the oldest volcanoes of the Cameroon Volcanic Line, was built up during the Eocene (40K/40Ar ages of 45.5 and 44.0 Ma). Located in the Eastern part of the Noun Plain, North-East of Foumbot, this massif is made up mainly of rhyolitic domes and thick, viscous lava flows. Such felsic lavas are rather rare in the Cameroon Volcanic Line. Most rhyolites are porphyritic and contain phenocrysts of K-feldspars (Or97–89), Na-feldspars (Ab99–88) and quartz. Scarce Fe–Ti oxides comprise titanohaematite and hemo-ilmenite. Owing to their low CaO contents, rhyolite compositions range from metaluminous to peraluminous (with normative corundum) and less commonly, peralkaline (normative aegirine). Chondrite-normalised REE patterns show LREE enrichment; and LaN/YbN ratios between 12.2 and 17.2, with prominent negative Eu anomalies (0.16 < Eu/Eu* < 0.62). The Th/Ta ratios range between 2.6 and 3. Initial 87Sr/86Sr ratios (0.7047 and 0.7050) and 143Nd/144Nd ratios (0.5125 and 0.5126, ΔNd of −1.04 to +1.22) suggest mantle sources (HIMU (high ” with Ό = 238U/204Pb), EM (Enriched Mantle), FOZO (FOcal ZOne) components) of the rhyolites accompanied by little or no crustal contamination

    Alkali magmatism on a carbonaceous chondrite planetesimal

    No full text
    International audienceRecent isotopic and paleomagnetic data point to a possible connection between carbonaceous chondrites and differentiated planetary materials suggesting the existence, perhaps ephemeral, of transitional objects with a layered structure whereby a metal-rich core is enclosed by a silicate mantle which is itself overlain by a crust containing an outermost layer of primitive solar nebula materials. This idea has not received broad support mostly because of a lack of samples in the meteoritic record that document incipient melting at the onset of planetary differentiation. Here we report the discovery and the petrologic-isotopic characterization of UH154-11, a ferroan trachybasalt fragment enclosed in a CR chondrite. Its chemical and oxygen isotopic compositions are consistent with very low degree partial melting of a CV chondrite from the oxidized subgroup at a depth where fluid-assisted metamorphism enhanced the Na content. Its micro-doleritic texture indicates crystallization at an increasing cooling rate such as would occur during magma ascent through a chondritic crust. This represents the first direct evidence of magmatic activity in a carbonaceous asteroid on the verge of differentiating and demonstrates that some primitive outer solar system objects related to icy asteroids and comets underwent a phase of magmatic activity early in the solar system. With its peculiar petrology, UH154-11 can be considered the long-sought first melt produced during partial differentiation of a carbonaceous chondritic planetary body bridging a previously persistent gap in differentiation processes from icy cometary bodies to fully melted iron meteorites with isotopic affinities to carbonaceous chondrites

    Miocene to recent alkaline volcanism between Al Haruj and Waw an Namous (southern Libya)

    No full text
    International audienceUnspiked K-Ar ages, petrological, geochemical and isotopic data are reported on samples from southern Libya (Wan an Namous--Al Haruj area). The Wan an Namous intracaldera cone dated at 0.2 Ma consists of unusually undersaturated foidite, representing the most extreme compositions among Libyan and Tibestian lavas. A basanitic and a basaltic lava flow located north-west of Wan an Namous, and probably belonging to the Al Haruj volcanic field, were dated at 5.1 Ma and 8.1 Ma. These data extend the range of ages previously reported for Al Haruj lavas. REE and multi-element patterns are typical of alkaline intraplate magmas. Sr ratios range from 0.70314 to 0.70812, whereas Nd ratios are very homogeneous (0.51290-0.51293). Pb ratios (19.231 < 206Pb/204Pb < 19.547, 15.607 < 207Pb/204Pb < 15.641 and 38.859 < 208Pb/204Pb < 39.242) are typical of HIMU-FOZO compositions. Such isotope characteristics are very similar to those available on two Gharyan (northern Libya) lavas and largely overlap those of Hoggar and Cameroon Line alkaline rocks. These lavas were produced by low and variable degrees of partial melting of a garnet- and amphibole-bearing mantle source, constraining the depth of melting between 80 and 150 km. Crustal contamination was also probably involved for the oldest sample. Mineral compositions of a dunite-harzburgite xenolith clearly indicate that the lithospheric mantle was affected by partial melting and metasomatic processes by magmatic liquids, probably associated with the genesis of Cenozoic lavas. Lithospheric delamination and asthenospheric upwelling, due to the reactivation of lithospheric megastructures induced by the Africa-Europe convergence, could represent a model for the genesis of Libyan lavas, as in Hoggar

    Chronologie des Ă©pisodes volcaniques plĂ©istocĂšnes du volcan GölcĂŒk, Angle d’Isparta, Turquie

    No full text
    International audienceIn the Eastern Mediterranean region, the Isparta volcanic belongs to the post-collisional alkali-potassic to ultrapotassic magmatism active since the Miocene in this part of the Anatolian peninsula from Afyon to Isparta. In the so-called Isparta Angle (IA) the magmatism is contemporaneous with an extensional regime intiated during Late Miocene and active throughout the Pliocene and Quaternary. Previous K/Ar dating performed on lavas suggested that potassic-ultrapotassic magmatism occurred between 4.7 to 4 Ma. However, a more recent (Quaternary) activity of the GölcĂŒk volcano is evidenced by the present-day morphology and field evidence although it remained undated and poorly studied so far. Field mapping and new radiometric data indicate that the main volcano-forming stages of the GölcĂŒk volcano consist of three main eruptives cycles. (1) Cycle I, represented by more than 200m-thick pyroclastic flow deposits occasionally separated by paleosoils and corresponding to caldera-forming ignimbritic eruptions. (2) Cycle II, consisting of tephriphonolite lava dome-flows extruded throughout the caldera and currently found along the rim of the present crater. (3) Cycle III made up of tuff-ring deposits related to several phreatoplinian eruptions of a maar-type volcanic activity. This youngest cycle ends with trachytic domes protruding within the maar crater. Unspiked 40 K/ 40 Ar dating on mesostasis was performed on lavas (tephriphonolites and trachytic domes), and complemented by preliminary 40 Ar/ 39 Ar data on tephra deposits (sanidine). Our preliminary results show that the entire activity of GölcĂŒk volcano took place during the Pleistocene and was disconnected from the older Pliocene volcanism. This volcanic activity can be considered as a new volcanic cycle, starting (Cycle I) around 200 ka with major explosive, regional-scale, events represented by at least six ignimbrites sheets. Cycle II occurred between 115 ± 3 ka to 62 ± 2 ka with probably some associated tephra deposits. Tuff-ring of Cycle III formed from 72.7 ± 4.7 ka to 24 ± 2 ka. The associated phreatoplinian eruptions have almost entirely destroyed the previously formed flow-dome. This latest activity corresponds to several volcanic crises as illustrated by the two domes protrusions separated by about 30 ka. The volcanic history of GölcĂŒk ceased around 24 ka ± 2 ka, but the periodicity of eruptive events appears to be long and complex. Currently, the volcano is at rest, but there is no doubt that the Isparta town (more than 120 000 people) built on top of the most recent tephra falls is exposed to a major volcanic hazard in the future. RÉSUMÉ CHRONOLOGIE DES ÉPISODES VOLCANIQUES PLÉISTOCÈNES DU VOLCAN GÖLCÜK, ANGLE D'ISPARTA, TURQUIE En MĂ©diterranĂ©e Orientale, la rĂ©gion active d'Isparta est le siĂšge d'un magmatisme alcalin liĂ© Ă  la distension affectant cette partie de la PĂ©ninsule Anatolienne depuis le MiocĂšne supĂ©rieur. Le volcanisme PliocĂšne est alcalin et trĂšs potassique, depuis des magmas lamprophyriques Ă  lamproĂŻtiques, jusqu'Ă  des tĂ©phriphonolites et des trachytes. La construction du volcan GölcĂŒk au sud d'Isparta marque le dĂ©but d'un nouveau cycle Ă©ruptif aprĂšs une longue pĂ©riode d'arrĂȘt et d'Ă©rosion. L'Ă©tude morpho-structurale du volcan couplĂ©e aux datations 40 K/ 40 Ar sur lave et 39 Ar/ 40 Ar sur monograin de feldspath-K indique une histoire Ă©ruptive complexe, nettement plus jeune que l'activitĂ© antĂ©rieure (PliocĂšne). Ces rĂ©sultats prĂ©liminaires montrent que l'activitĂ© volcanique du GölcĂŒk est situĂ©e dans le PlĂ©istocĂšne supĂ©rieur (PalĂ©olithique) entre environ 200 ka et 24 ka. Trois cycles volcaniques majeurs sont reconnus : (1) Cycle I dĂ©butant vers 200 ka avec des Ă©ruptions ignimbritiques majeures avec un ensemble de coulĂ©es pyroclastiques trachytiques comblant les palĂ©o-vallĂ©es ouvertes dans les formations sĂ©dimentaires et les formations volcaniques d'Ăąge pliocĂšne ; (2) Cycle II avec un Ă©pisode effusif de faible importance succĂšde entre 115 ± 3 ka et 62 ± 2 ka Ă  l'activitĂ© explosive initiale avec la mise en place d'un Ă©difice central constituĂ© de dĂŽmes-coulĂ©es tĂ©phri-phonolitiques ; (3) Cycle III entre 70 ka et 24 ka, l'activitĂ© devient phrĂ©atoplinienne et suit de prĂšs le cycle prĂ©cĂ©dent. Le dynamisme Ă©ruptif phrĂ©atomagmatique est celui d'un maar formĂ© d'un large cratĂšre d'explosion entourĂ© d'un anneau de tufs. La derniĂšre crise volcanique se termine par l'extrusion de plusieurs dĂŽmes de trachyte dans le cratĂšre et de tĂ©phras associĂ©s, de nouvelles coulĂ©es pyroclastiques se mettent vraisemblablement en place vers le nord-ouest. Les donnĂ©es de terrain et les Ăąges 40 Ar/ 39 Ar disponibles indiquent que ces derniĂšres manifestations (construction du maar) sont trĂšs rĂ©centes et sub-contemporaines du dernier niveau de retombĂ©es ponceuses sous les immeubles de la ville et des dĂŽmes de lave intra-caldeira. Cet Ăąge rĂ©cent est confirmĂ© par un Ăąge 14 C obtenu sur des bois carbonisĂ©s. La morphologie du volcan actuel est relativement bien conservĂ©e, malgrĂ© l'Ă©rosion trĂšs active qui remodĂšle dĂ©jĂ  partiellement les pentes. La reprise Ă©ventuelle de l'activitĂ© du volcan constituerait un risque majeur Ă  l'Ă©chelle de la rĂ©gion et en particulier pour la ville d'Isparta Ă©tablie au pied de l'Ă©difice, notamment sur les coulĂ©es pyroclastiques et les retombĂ©es ponceuses les plus rĂ©centes
    corecore