618 research outputs found
Dispersive representation of the scalar and vector Kpi form factors for tau --> K pi nu_tau and K_{l3} decays
Recently, the tau --> K pi nu_tau decay spectrum has been measured by the
Belle and BaBar collaborations. In this work, we present an analysis of such
decays introducing a dispersive parametrization for the vector and scalar Kpi
form factors. This allows for precise tests of the Standard Model. For
instance, the determination of f_+(0)|V_{us}| from these decays is discussed. A
comparison and a combination of these results with the analyses of the K_{l3}
decays is also considered.Comment: 6 pages, 1 figure. Talk given at 11th International Workshop on Tau
Lepton Physics, Manchester, UK, 13-17 September 201
Regularization and renormalization in effective field theories of the nucleon-nucleon interaction
Some form of nonperturbative regularization is necessary if effective field
theory treatments of the NN interaction are to yield finite answers. We discuss
various regularization schemes used in the literature. Two of these methods
involve formally iterating the divergent interaction and then regularizing and
renormalizing the resultant amplitude. Either a (sharp or smooth) cutoff can be
introduced, or dimensional regularization can be applied. We show that these
two methods yield different results after renormalization. Furthermore, if a
cutoff is used, the NN phase shift data cannot be reproduced if the cutoff is
taken to infinity. We also argue that the assumptions which allow the use of
dimensional regularization in perturbative EFT calculations are violated in
this problem. Another possibility is to introduce a regulator into the
potential before iteration and then keep the cutoff parameter finite. We argue
that this does not lead to a systematically-improvable NN interaction.Comment: 5 pages, LaTeX, uses espcrc1.sty, summary of talk given at the 15th
International Conference on Few-Body Problems in Physic
The S-Wave Pion-Nucleon Scattering Lengths from Pionic Atoms using Effective Field Theory
The pion-deuteron scattering length is computed to next-to-next-to-leading
order in baryon chiral perturbation theory. A modified power-counting is then
formulated which properly accounts for infrared enhancements engendered by the
large size of the deuteron, as compared to the pion Compton wavelength. We use
the precise experimental value of the real part of the pion-deuteron scattering
length determined from the decay of pionic deuterium, together with constraints
on pion-nucleon scattering lengths from the decay of pionic hydrogen, to
extract the isovector and isoscalar S-wave pion-nucleon scattering lengths, a^-
and a^+, respectively. We find a^-=(0.0918 \pm 0.0013) M_\pi^{-1} and
a^+=(-0.0034 \pm 0.0007) M_\pi^{-1}.Comment: 19 pages LaTeX, 7 eps fig
Compton Scattering on the Deuteron in Baryon Chiral Perturbation Theory
Compton scattering on the deuteron is studied in the framework of baryon
chiral perturbation theory to third order in small momenta, for photon energies
of order the pion mass. The scattering amplitude is a sum of one- and
two-nucleon mechanisms with no undetermined parameters. Our results are in good
agreement with existing experimental data, and a prediction is made for
higher-energy data being analyzed at SAL.Comment: 39 pages LaTeX, 19 figures (uses epsf
The potential of effective field theory in NN scattering
We study an effective field theory of interacting nucleons at distances much
greater than the pion's Compton wavelength. In this regime the NN potential is
conjectured to be the sum of a delta function and its derivatives. The question
we address is whether this sum can be consistently truncated at a given order
in the derivative expansion, and systematically improved by going to higher
orders. Regularizing the Lippmann-Schwinger equation using a cutoff we find
that the cutoff can be taken to infinity only if the effective range is
negative. A positive effective range---which occurs in nature---requires that
the cutoff be kept finite and below the scale of the physics which has been
integrated out, i.e. O(m_\pi). Comparison of cutoff schemes and dimensional
regularization reveals that the physical scattering amplitude is sensitive to
the choice of regulator. Moreover, we show that the presence of some regulator
scale, a feature absent in dimensional regularization, is essential if the
effective field theory of NN scattering is to be useful. We also show that one
can define a procedure where finite cutoff dependence in the scattering
amplitude is removed order by order in the effective potential. However, the
characteristic momentum in the problem is given by the cutoff, and not by the
external momentum. It follows that in the presence of a finite cutoff there is
no small parameter in the effective potential, and consequently no systematic
truncation of the derivative expansion can be made. We conclude that there is
no effective field theory of NN scattering with nucleons alone.Comment: 25 pages LaTeX, 3 figures (uses epsf
Threshold neutral pion photoproduction off the tri-nucleon to O(q^4)
We calculate electromagnetic neutral pion production off tri-nucleon bound
states (3H, 3He) at threshold in chiral nuclear effective field theory to
fourth order in the standard heavy baryon counting. We show that the fourth
order two-nucleon corrections to the S-wave multipoles at threshold are very
small. This implies that a precise measurement of the S-wave cross section for
neutral pion production off 3He allows for a stringent test of the chiral
perturbation theory prediction for the S-wave electric multipole E_{0+}^{pi0
n}.Comment: 17 pages, 5 figures, title changed, final version to appear in EPJA.
arXiv admin note: substantial text overlap with arXiv:1103.340
Lattice calculation of hybrid mesons with improved Kogut-Susskind fermions
We report on a lattice determination of the mass of the exotic
hybrid meson using an improved Kogut-Susskind action. Results from both
quenched and dynamical quark simulations are presented. We also compare with
earlier results using Wilson quarks at heavier quark masses. The results on
lattices with three flavors of dynamical quarks show effects of sea quarks on
the hybrid propagators which probably result from coupling to two meson states.
We extrapolate the quenched results to the physical light quark mass to allow
comparison with experimental candidates for the hybrid meson. The
lattice result remains somewhat heavier than the experimental result, although
it may be consistent with the .Comment: 24 pages, 12 figures. Replaced to match published versio
Large-scale structural organization of social networks
The characterization of large-scale structural organization of social
networks is an important interdisciplinary problem. We show, by using scaling
analysis and numerical computation, that the following factors are relevant for
models of social networks: the correlation between friendship ties among people
and the position of their social groups, as well as the correlation between the
positions of different social groups to which a person belongs.Comment: 5 pages, 3 figures, Revte
Improved Determination of the Mass of the Light Hybrid Meson From QCD Sum Rules
We calculate the next-to-leading order (NLO) -corrections to the
contributions of the condensates and in the
current-current correlator of the hybrid current
g\barq(x)\gamma_{\nu}iF_{\mu\nu}^aT^aq(x) using the external field method in
Feynman gauge. After incorporating these NLO contributions into the Laplace
sum-rules, the mass of the = light hybrid meson is recalculated
using the QCD sum rule approach. We find that the sum rules exhibit enhanced
stability when the NLO -corrections are included in the sum rule
analysis, resulting in a light hybrid meson mass of approximately 1.6
GeV.Comment: revtex4, 10 pages, 7 eps figures embedded in manuscrip
Compton scattering on the proton, neutron, and deuteron in chiral perturbation theory to O(Q^4)
We study Compton scattering in systems with A=1 and 2 using chiral
perturbation theory up to fourth order. For the proton we fit the two
undetermined parameters in the O(Q^4) p amplitude of McGovern to
experimental data in the region MeV, obtaining a
chi^2/d.o.f. of 133/113. This yields a model-independent extraction of proton
polarizabilities based solely on low-energy data: alpha_p=12.1 +/- 1.1 (stat.)
+/- 0.5 (theory) and beta_p=3.4 +/- 1.1 (stat.) +/- 0.1 (theory), both in units
of 10^{-4} fm^3. We also compute Compton scattering on deuterium to O(Q^4). The
d amplitude is a sum of one- and two-nucleon mechanisms, and contains
two undetermined parameters, which are related to the isoscalar nucleon
polarizabilities. We fit data points from three recent d scattering
experiments with a chi^2/d.o.f.=26.6/20, and find alpha_N=13.0 +/- 1.9 (stat.)
+3.9/-1.5 (theory) and a beta_N that is consistent with zero within sizeable
error bars.Comment: 57 pages, 16 figures. Substantial changes. Correction of errors in
deuteron calculation results in different values for isoscalar
polarizabilities. Results for the proton are unaffected. Text modified to
reflect this change, and also to clarify various point
- …
