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Abstract

We calculate electromagnetic neutral pion production off tri-nucleon bound states (3H, 3He) at
threshold in chiral nuclear effective field theory to fourth order in the standard heavy baryon
counting. We show that the fourth order two-nucleon corrections to the S-wave multipoles at
threshold are very small. This implies that a precise measurement of the S-wave cross section
for neutral pion production off 3He allows for a stringent test of the chiral perturbation theory
prediction for the S-wave electric multipole Eπ
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1 Introduction

In the absence of free neutron targets, light nuclei like the deuteron or three-nucleon bound states like
3H (triton) or 3He can be used to unravel the properties of neutrons. For a recent review on extracting
the neutron structure from electron or photon scattering off light nuclei, see Ref. [1]. Of particular
interest in this respect is threshold neutral pion photo- and electroproduction off the nucleon. This
is one of the finest reactions to test the chiral dynamics of QCD, see Ref. [2] for a recent review.
Arguably most striking is the counterintuitive chiral perturbation theory prediction (CHPT) that
the elementary neutron S-wave multipole Eπ

0n
0+ is larger in magnitude than the corresponding one

of the proton, Eπ
0p

0+ [3, 4]. This prediction was already successfully tested in neutral pion photo-
[5, 6] and electroproduction off the deuteron [7]. However, given the scarcity and precision of the
corresponding data, it is mandatory to study also pion production off tri-nucleon bound states, that
can be calculated nowadays to high precision based on chiral nuclear effective field theory (EFT).
This framework extends CHPT to nuclear physics (for recent reviews, see [8, 9]). 3He appears to
be a particularly promising target to extract information about the neutron amplitude. This idea
is usually invoked for spin-dependent quantities since the 3He wave function is strongly dominated
by the principal S-state component which suggests that its spin is largely driven by the one of the
neutron. The photo- and electroproduction of neutral pions from tri-nucleon systems (3He and 3H)
was considered in Ref. [10] based on chiral 3N wave functions at next-to-leading order in the standard
heavy baryon expansion. Here, we extend this calculation to fourth order in the chiral expansion,
including consistently all next-to-next-to-leading order contributions in the standard heavy baryon
expansion. This amounts to a complete (i.e. subleading) one-loop calculation in the one-nucleon
sector. An investigation of the role of nucleon recoil, accounting for the scale χ =

√
MπmN ≃ 340

MeV, is beyond the scope of this work and will be left for the future.
Experimentally, neutral pion photoproduction off light nuclei has so far only been studied at

Saclay [11,12] and at Saskatoon [13,14]. Clearly, new measurements using CW beams, modern targets
and detectors are urgently called for. The results presented below show that we are able to calculate
neutral pion photoproduction off tri-nucleon systems to very good precision and, moreover, that the
S-wave cross section for neutral pion production off 3He is very sensitive to the elementary Eπ

0n
0+

multipole (as already stressed in Ref. [10]).
Our manuscript is organized as follows. Section 2 contains all the necessary formalism. In particu-

lar, we spell out in detail the fourth order two-nucleon corrections that modify the third order results
of Ref. [10]. We also briefly recall the contributions worked out in that paper. Section 3 contains our
results and the discussion of these. We end with a short summary and outlook in Sec. 4.

2 Formalism

2.1 Generalities

Pion production off a tri-nucleon bound state is given in terms of three different topologies of Feyn-
man diagrams, see Fig. 1. While the single-nucleon contribution (a) corresponding to the standard
impulse approximation features the elementary neutron and proton production amplitudes, the nu-
clear corrections are given by two-body (b) and three-body (c) terms. Based on the power counting
developed in [5], at next-to-next-to-leading order (NNLO), only the topologies (a) and (b) contribute.
Topology (c) starts to contribute at fourth order to P-wave multipoles and is thus not of relevance for
our considerations. Here, we will specifically consider threshold photo- and electroproduction param-
eterized in terms of the electric E0+ and longitudinal L0+ S-wave multipoles. In particular, we study
the sensitivity of the 3H/3He S-wave multipoles to the elementary Eπ

0n
0+ multipole, as the production
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amplitude off the proton is well understood experimentally and theoretically.

Figure 1: Different topologies contributing to pion production off the three-nucleon bound state (tri-
angle). (a), (b) and (c) represent the single-, two- and three-nucleon contributions, respectively. Solid,
dashed and wiggly lines denote nucleons, pions and photons, in order. Topology (c) does not contribute
to the order considered here (NNLO).

To analyze pion photo- and electroproduction of the tri-nucleon system, one has to calculate the
nuclear matrix element of the transition operator Ô as:

〈M ′
J |Ô|MJ〉ψ := 〈ψM ′

J
~P ′
3N ~q | Ô |ψMJ

~P3N
~k 〉 , (1)

where ψ refers to the three-nucleon state and ~k, ~q, ~P3N and ~P ′
3N denote the momentum of the real or

virtual photon, produced pion and the initial and final momenta of the 3N nucleus, respectively. We
use the Coulomb gauge throughout this work. Note, however, that the Coulomb gauge condition is
only satisfied up to higher order corrections in our calculation. Possible improvements are discussed
in Refs. [15, 16].

The 3N bound state has total nuclear angular momentum J = 1/2 with magnetic quantum numbers
MJ for the initial and M ′

J for the final nuclear state. J can be decomposed in total spin S = 1/2, 3/2
and total orbital angular momentum L = 0, 1, 2. The total isospin is a mixture of two components,
T = 1/2 and 3/2. While the T = 1/2 component is large, the small T = 3/2 component emerges due
to isospin breaking and is neglected in our calculation. The isospin magnetic quantum numbers are
MT = MT ′ = 1/2 for 3He and MT = MT ′ = −1/2 for 3H. In this paper, we consider neutral pion
production by real or virtual photons off a spin-1/2 particle - either the nucleon or the 3H and 3He
nuclei. At threshold, the corresponding transition matrix takes the form

Mλ = 2iE0+ (~ǫλ,T · ~S) + 2i L0+ (~ǫλ,L · ~S) , (2)

with ~ǫλ,T = ~ǫλ−(~ǫλ ·k̂)k̂ and ~ǫλ,L = (~ǫλ ·k̂)k̂ the transverse and longitudinal photon polarization vectors,

and ~S is the spin vector. The transverse and longitudinal S-wave multipoles are denoted by E0+ and
L0+, respectively. Note that L0+ contributes only for virtual photons. Also, as will be explained later
in more detail, due to boost effects that appear at next-to-next-to-leading order (NNLO), there will
be P-wave corrections to the S-wave multipoles. In the following, we will first recapitulate the leading
one-loop calculation from Ref. [10] and then systematically work out the NNLO corrections.
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The chiral expansion of the pertinent amplitudes is done in complete analogy to the case of the
deuteron discussed in detail in Ref. [6]. We summarize here only briefly the most important issues.
First, the production operator on the single nucleon is worked out to fourth order in the chiral
expansion. This is consistent with the two-body contributions (exchange currents) worked out here.
The leading two-nucleon terms start at third order and have been evaluated in Ref. [10]. At fourth
order, there are further corrections to the two-body currents which can be classified as boost, static
and recoil contributions. These will be worked out in detail in the following paragraphs. Second, using
the same arguments as in Ref. [5,6], one can show that there are no contributions from short-distance
four-nucleon-pion-photon operators at threshold (which is the case we consider here). Notice that
such operators do contribute at fourth order for nonvanishing momenta of the produced pion.

2.2 Single nucleon and leading two-nucleon contributions at threshold

As explained before, the matrix element Eq. (1) receives contributions from one- and two-nucleon
operators at the order we are working. Consider first the single nucleon contribution, given in terms
of the 1-body transition operator Ô1N. After some algebra, one finds

〈M ′
J |Ô1N|MJ〉ψ = i~ǫλ,T · ~SM ′

J
MJ

(

Eπ
0p

0+ FS+VT +Eπ
0n

0+ FS−VT

)

+ i~ǫλ,L · ~SM ′

J
MJ

(

Lπ
0p

0+ F
S+V
L +Lπ

0n
0+ FS−VL

)

,

(3)
where FS±VT/L ≡ FST/L ± F VT/L and FS,VT/L denote the corresponding form factors of the 3N bound state,

FST/L ~ǫλ,T/L · ~SM ′

J
MJ

=
3

2
〈M ′

J |~ǫλ,T/L · ~σ1|MJ〉ψ ,

F VT/L ~ǫλ,T/L · ~SM ′

J
MJ

=
3

2
〈M ′

J |~ǫλ,T/L · ~σ1τ z1 |MJ〉ψ , (4)

which parameterize the response of the composite system to the excitation by photons in spin-isospin
space. ~SM ′

J
MJ

are the corresponding spin transitions matrix elements. In the above equation, ~σi (~τi)
denote the spin (isospin) Pauli matrices corresponding to the nucleon i. Furthermore, z refers to the
isospin quantization axis.

Using the 3N wave functions from chiral nuclear EFT at the appropriate order, the pertinent
matrix elements in Eq. (4) can be evaluated. Here, we use chiral 3N wave functions obtained from the
N2LO interaction in the Weinberg power counting [17,18].#5 In order to estimate the error from higher
order corrections, we use wave functions for five different combinations of the cutoff Λ̃ in the spectral
function representation of the two-pion exchange and the cutoff Λ used to regularize the Lippmann-
Schwinger equation for the two-body T-matrix. The wave functions are taken from Ref. [19, 20] and
the corresponding cutoff combinations in units of MeV are (Λ̃,Λ) = (450,500), (600,500), (550,600),
(450,700), (600,700). All five sets describe the binding energies of the 3He and 3H nuclei equally well
(after inclusion of the corresponding three-nucleon force).

The one-body contribution to the 3N multipoles are given by

E1N
0+ =

K1N

2

(

Eπ
0p

0+ FS+VT + Eπ
0n

0+ FS−VT

)

,

L1N
0+ =

K1N

2

(

Lπ
0p

0+ FS+VL + Lπ
0n

0+ FS−VL

)

. (5)

#5The consistency of the Weinberg counting for short-range operators and the non-perturbative renormalization of
chiral EFT are currently under discussion, see the reviews [8,9] and references therein for more details. A real alternative
to the Weinberg approach for practical calculations in systems of three and more nucleons, however, is not available.
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nucleus 3He 3H

FS+VT 0.017(13)(3) 1.493(25)(3)

FS−VT 1.480(26)(3) 0.012(13)(3)

FS+VL −0.079(14)(8) 1.487(27)(8)

FS−VL 1.479(26)(8) −0.083(14)(8)

Table 1: Numerical results for the form factors FS±VT/L . The first error is our estimation of the theoretical
uncertainty resulting from the truncation of the chiral expansion while the second one is the statistical
error from the Monte Carlo integration.

Here, K1N is the kinematical factor to account for the change in phase space from the 1N to the 3N
system,

K1N =
mN +Mπ

m3N +Mπ

m3N

mN
≈ 1.092 , (6)

with mN being the nucleon mass and m3N the mass of the three-nucleon bound state. Throughout,
we denote the neutral pion mass by Mπ, but the S-wave multipoles are usually given in terms of
the charged pion mass Mπ+ and also the charged pion mass appears in some of the two-nucleon
contributions.

We evaluate the matrix elements for the one-body contribution in Eq. (4) numerically with Monte
Carlo integration using the VEGAS algorithm [21]. The results for the form factors FS±VT/L are given in
Table 1. The first error represents the theoretical uncertainty estimated from the cutoff variation in
the wave functions. We take the central value defined by the five different cutoff sets as our prediction
and estimate the theory error from higher-order corrections from the spread of the calculated values.
Strictly speaking, this procedure gives a lower bound on the error, but in practice it generates a
reasonable estimate. The second error is the statistical error from the Monte Carlo evaluation of the
integrals. It is typically much smaller than the estimated theory error and can be neglected. Note
that the single nucleon results in Table 1 are consistent with isospin symmetry within the numerical
accuracy. This feature was not explicitly enforced and provides a check on our calculation.

We stress that we follow the nuclear EFT formulation of Lepage, in which the whole effective
potential is iterated to all orders when solving the Schrödinger equation for the nuclear states. As
discussed in Ref. [22], the cutoff should be kept of the order of the breakdown scale or below in order
to avoid unnatural scaling of the coefficients of higher order terms. Indeed, using larger cutoffs can
lead to a violation of certain low-energy theorems as demonstrated in Ref. [23] for an exactly solvable
model.

The error related to the expansion of the production operator is difficult to estimate given that the
convergence in the expansion for the single nucleon S-wave multipoles is known to be slow, see Ref. [3]
for an extended discussion. We therefore give only a rough estimate of this uncertainty. The extractions
of the proton S-wave photoproduction amplitude based on CHPT using various approximations [24]

lead to an uncertainty ∆Eπ
0p

0+ ≈ ±0.05 × 10−3/Mπ+ , which is about 5%. The uncertainty of the
neutron S-wave threshold amplitude is estimated to be the same. Consequently, our estimate of the
error on the single nucleon amplitude is 5%.

We now switch to the two-nucleon contribution. In Coulomb gauge, only the two Feynman dia-
grams shown in Fig. 2 contribute at threshold at third order [5,6]. Their contribution to the multipoles
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Figure 2: Leading two-nucleon contributions to the nuclear pion production matrix element at thresh-
old. Solid, dashed and wiggly lines denote nucleons, pions and photons, in order.

can be written as

E2N
0+ = K2N (F

(a)
T − F

(b)
T ) ,

L2N
0+ = K2N (F

(a)
L − F

(b)
L ) , (7)

with the prefactor

K2N =
MπegAm3N

16π(m3N +Mπ)(2π)3F 3
π

≈ 0.135 fm × 10−3/Mπ+ . (8)

The numerical value for K2N was obtained using gA = 1.26 for the axial-vector coupling constant,
Fπ = 93 MeV for the pion decay constant, and the neutral pion mass Mπ = 135 MeV. Note that we
use the older values for gA and Fπ to be consistent with the numbers used in the evaluation of the single

nucleon multipoles [3, 4]. The transverse and longitudinal form factors F
(a)
T/L and F

(b)
T/L corresponding

to diagrams (a) and (b), respectively, are

F
(a)
T/L ~ǫλ,T/L · ~SM ′

J
MJ

=
3

2

〈

M ′
J

∣

∣

∣

∣

~ǫλ,T/L · (~σ1 + ~σ2)(~τ1 · ~τ2 − τ z1 τ
z
2 )

~q ′2

∣

∣

∣

∣

MJ

〉

ψ

, (9)

and

F
(b)
T/L ~ǫλ,T/L · ~SM ′

J
MJ

= 3

〈

M ′
J

∣

∣

∣

∣

(~τ1 · ~τ2 − τ z1 τ
z
2 )
[

(~q ′ − ~k) · (~σ1 + ~σ2)
][

~ǫλ,T/L · (~q ′ − ~k/2)
]

[

(~q ′ − ~k)2 +M2
π+

]

~q ′2

∣

∣

∣

∣

MJ

〉

ψ

, (10)

where ~q ′ = ~p12 − ~p ′
12 +

~k/2 is the momentum of the exchanged pion and ~p12 = (~k1 − ~k2)/2, ~p
′
12 =

(~k′1 − ~k′2)/2 are the initial and final Jacobi momenta of nucleons 1 and 2, respectively. The integral

for the form factors F
(a)
T/L contains an integrable singularity which can be removed by an appropriate

variable transformation. Then, the form factors can be evaluated using Monte Carlo integration in

the same way as the form factors for the single-nucleon contribution. Our results for F
(a)
T/L −F

(b)
T/L are

given in Table 2. The first error is again the theory error estimated from the cutoff variation in the
chiral interaction as described above. The second error is the statistical error from the Monte Carlo
integration which is about half the size of the theory error.
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nucleus 3He 3H

F
(a)
T − F

(b)
T [fm−1] −29.3(2)(1) −29.7(2)(1)

F
(a)
L − F

(b)
L [fm−1] −22.9(2)(1) −23.2(1)(1)

Table 2: Numerical results for the form factors F
(a)
T/L − F

(b)
T/L parameterizing two-body contributions

in units of fm−1. The first error is our estimation of the theoretical uncertainty resulting from the
truncation of the chiral expansion while the second one is the statistical error from the Monte Carlo
integration.

(a1)

(a2)

(a3)

(a4)

(b1)

+ +

+

+ +

+

+ +

Figure 3: Subleading static two-nucleon contributions to the nuclear pion production matrix element
at threshold. The filled circle denotes an insertion from the dimension two effective Lagrangian. For
further notations, see Fig. 2.

2.3 Fourth order contributions

Apart from the fourth order corrections already included in the single nucleon multipoles E0+ and
L0+, there are various fourth order corrections that arise due to the presence of the other two nucleons
in the tri-nucleon system considered here. First, there are the boost corrections that arise from the
observation that within a nucleus the threshold for pion production is shifted compared to the free
threshold. For light systems as considered here, this essentially induces P-wave contributions as
detailed in Sec. 2.3.1. Second, there are further corrections to the two-nucleon production operator
displayed in Figs. 3 and 4. These can be grouped in two categories, namely the so-called static and the
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so-called recoil corrections. The static corrections are shown in Fig. 3. They involve - as the leading
2N corrections do - static propagators but one insertion from the dimension two chiral effective pion-
nucleon Lagrangian. The recoil corrections feature corrections to the static propagators with only
insertions from the leading order (dimension one) chiral Lagrangian. These corrections are most
conveniently derived in time-ordered perturbation theory. The corresponding diagrams are shown in
Fig. 4. The boxes indicate the regions where the two energy denominators whose 1/mN -expansion
generates these corrections can appear (see Ref. [25] for more details). These two types of corrections
will be discussed in Sec. 2.3.2 and Sec. 2.3.3, in order.

(b′1) (b′2) (b′3)

(b′4) (b′5) (b′6)

(a′1)

Figure 4: Subleading recoil two-nucleon contributions to the nuclear pion production matrix element
at threshold in time-ordered perturbation theory. The boxes indicate the regions where the two energy
denominators to be expanded can appear Further notation as in Fig. 2.

2.3.1 Boost corrections to the one-nucleon contributions

The proton and neutron production amplitudes are calculated in the (N, γ) center-of-mass system
(cms). The boost of a (3N, γ)-cms four-vector p to the (N, γ)-cms four-vector p∗ has the general form

(

p0∗

~p ∗

)

=

(

γ −γ~β
−γ~β (113 − P~β) + γP~β

)(

p0

~p

)

=

(

γ(p0 − ~β · ~p)
−γ~βp0 + ~p⊥ + γ~p‖

)

, (11)

where P~β is the projection operator onto the ~β-direction, i.e. P~β ~x = (β̂ ·~x)β̂, ~p‖ = P~β ~p is the parallel

part, and ~p⊥ = (1 − P~β)~p the perpendicular part of ~p = ~p‖ + ~p⊥ with respect to ~β. To determine ~β,

we consider ~k1 + ~k. In the (N, γ)-cms this combination has to vanish, i.e. ~k ∗
1 + ~k ∗ = 0. We have

~k ∗
1 + ~k ∗ = γ

(

−~β(k01 + k0) + P~β(
~k1 + ~k)

)

+ (1− P~β)(
~k1 + ~k)

!
= ~0. (12)

Because linearly independent (even orthogonal) vectors have to vanish separately, i.e.

(1− P~β)(
~k1 + ~k) = ~0 ,

−~β(k01 + k0) + P~β(
~k1 + ~k) = ~0 ,
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we conclude that

~β =
~k1 + ~k

k01 + k0
=

~k ′
1 + ~q

k′01 + q0
=

~p ′
12 − ~p ′

3/2 + 2~q/3
√

(~p ′
12 − ~p ′

3/2− ~q/3)2 +m2
N + q0

. (13)

For the definition of the Jacobi momenta used above, see Eqs. (9, 10). Near the static limit we have

~β =
~p ′
12 − ~p ′

3/2 + 2~q/3

mN

(
√

(~p ′
12 − ~p ′

3/2− ~q/3)2

m2
N

+ 1 +

√

~q 2 +M2
π

mN

)−1

=
~p ′
12 − ~p ′

3/2 + 2~q/3

mN
+O

(

m−2
N

) threshold−−−−−→ ~p ′
12 − ~p ′

3/2

mN
+O

(

m−2
N

)

, (14)

and thus γ =
(

1− β2
)−1/2

= 1 +O
(

m−2
N

)

. Correspondingly, a general four-vector pµ in the (3N, γ)-
cms transforms to the (N, γ)-cms as

p0∗ = γ(p0 − ~β · ~p) = p0 − ~p ′
12 − ~p ′

3/2 + 2~q/3

mN
· ~p threshold−−−−−→ p0 − ~p ′

12 − ~p ′
3/2

mN
· ~p, (15)

~p ∗ = −γ~βp0 + ~p⊥ + γ~p‖ = ~p− ~p ′
12 − ~p ′

3/2 + 2~q/3

mN
p0

threshold−−−−−→ ~p− ~p ′
12 − ~p ′

3/2

mN
p0, (16)

to first order in the inverse nucleon mass. At threshold, the boosted energy and momentum for the
photon (k0∗, ~k∗) and pion (q0∗, ~q∗), as well as the time- and space-like components of the photon
polarization vector (ǫ0∗λ , ~ǫ∗λ) are thus given by:

k0∗ = k0 − (~p ′
12 − ~p ′

3/2) · ~k
mN

, ~k∗ = ~k − k0

mN
(~p ′

12 − ~p ′
3/2),

q0∗ = q0 − (~p ′
12 − ~p ′

3/2) · ~q
mN

=Mπ, ~q ∗ = ~q − q0

mN
(~p ′

12 − ~p ′
3/2) = −Mπ

mN
(~p ′

12 − ~p ′
3/2),

ǫ0∗λ = ǫ0λ −
(~p ′

12 − ~p ′
3/2) · ~ǫλ

mN
, ~ǫ ∗λ = ~ǫλ −

ǫ0λ
mN

(~p ′
12 − ~p ′

3/2) = ~ǫλ. (17)

Since ǫ0λ = 0, the polarization vector does not change except for the time component.
To adopt the results for pion production off nucleons which were calculated in the (N, γ)-cms for

our calculation on the tri-nucleon, the pion momentum in the (3N, γ)-cms at threshold, ~q = ~0, is
boosted to the (N, γ)-cms value ~q ∗ = −(Mπ/mN )(~p

′
12−~p ′

3/2) =: −µ(~p ′
12−~p ′

3/2) above threshold. The
corresponding P-wave contribution reads (using the notation from Ref. [26])

Mλ = 2i(~ǫλ · ~S)(q̂ ∗ · k̂)P1 + 2i(~ǫλ · q̂ ∗)(k̂ · ~S)P2 + (~ǫλ · [q̂ ∗ × k̂])P3

+ 2i(~ǫλ · k̂)(k̂ · ~S)(q̂ ∗ · k̂)(P4 − P5 − P1 − P2) + 2i(~ǫλ · k̂)(q̂ ∗ · ~S)P5

=: 2i(~ǫλ,T · ~S)(q̂ ∗ · k̂)P1 + 2i(~ǫλ,T · q̂ ∗)(k̂ · ~S)P2 + (~ǫλ,T · [q̂ ∗ × k̂])P3

+ 2i(~ǫλ,L · ~S)(q̂ ∗ · k̂)P4 + 2i(~ǫλ,L · k̂)(q̂ ∗T · ~S)P5.

Close to threshold, the P-wave multipoles Pi behave as Pi ≈ P̄i|~q ∗| = µP̄i|~p ′
12 − ~p ′

3/2| with

P̄ p1 = +0.0187 fm2 , P̄ p3 = +0.0240 fm2 , P̄ p4 = +0.0013 fm2 ,

P̄n1 = +0.0134 fm2 , P̄n3 = +0.0234 fm2 , P̄n4 = +0.0003 fm2 , (18)

where the numerical values refer to the P-wave low-energy theorems for pion photo- [3] and electro-
production [27]. Corrections to these theorems are beyond the accuracy of our calculation.
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nucleus 3He 3H

FS+V1 +0.004(3)(1) +0.339(6)(1)

FS−V1 +0.338(5)(1) +0.002(3)(1)

FS+V3 −0.015(2)(0) −0.011(2)(0)

FS−V3 −0.011(2)(0) −0.015(2)(0)

FS+V4 −0.019(5)(4) +0.339(6)(4)

FS−V4 +0.337(6)(4) −0.021(3)(4)

Table 3: Numerical results for the boost correction form factors FS±Vi in units of [fm−1]. The first error
is our estimation of the theoretical uncertainty resulting from the truncation of the chiral expansion
while the second one is the statistical error from the Monte Carlo integration.

In analogy to the S-wave case discussed above, we define the corresponding P-wave form factors

(

~ǫλ,T · ~SM ′

J
MJ

)

F
S/V
1 =

〈

MJ ′

∣

∣

∣
3
(

~ǫλ,T · ~S1
)(

(~p ′
12 − ~p ′

3/2) · k̂
)

XS/V
∣

∣

∣
MJ

〉

ψ
,

(

~ǫλ,T · ~SM ′

J
MJ

)

F
S/V
2 =

〈

MJ ′

∣

∣

∣
3
(

~ǫλ,T · (~p ′
12 − ~p ′

3/2)
)(

k̂ · ~S1
)

XS/V
∣

∣

∣
MJ

〉

ψ
,

(

~ǫλ,T · ~SM ′

J
MJ

)

F
S/V
3 =

〈

MJ ′

∣

∣

∣

∣

−3

2
i
(

~ǫλ,T · [(~p ′
12 − ~p ′

3/2)× k̂]
)

XS/V

∣

∣

∣

∣

MJ

〉

ψ

,

(

~ǫλ,L · ~SM ′

J
MJ

)

F
S/V
4 =

〈

MJ ′

∣

∣

∣
3
(

~ǫλ,L · ~S1
)(

(~p ′
12 − ~p ′

3/2) · k̂
)

XS/V
∣

∣

∣
MJ

〉

ψ
,

(

~ǫλ,L · ~SM ′

J
MJ

)

F
S/V
5 =

〈

MJ ′

∣

∣

∣
3
(

~ǫλ,L · k̂
)(

(p̂ ′
12 − ~p ′

3/2)T · ~S1
)

XS/V
∣

∣

∣
MJ

〉

ψ
, (19)

where the spin and isospin operators refer to nucleon 1. Further, we have introduced the notation
XS = 1, XV = τ z1 . The contributions from the other nucleons are accounted for by the overall factor
of three.

In terms of these form factors, the P-wave contribution to the 3N-production amplitude takes the
form:

E1N,boost
0+ ≈ −0.546µ

3
∑

i=1

(

FS+Vi P̄ pi + FS−Vi P̄ni

)

, (20)

L1N,boost
0+ ≈ −0.546µ

5
∑

i=4

(

FS+Vi P̄ pi + FS−Vi P̄ni

)

, (21)

where FS±Vi = FSi ± F Vi . These form factors are evaluated using the same Monte Carlo method as
employed for the S-waves. The numerical values are collected in Tab. 3. Note that F2 and F5 come
out to be consistent with zero and therefore not listed in the table. As before, the proton contribution
is dominant in 3H, whereas the neutron one features prominently in 3He.

Notice that in contrast to the single-nucleon corrections, we do not need to employ a special
treatment for boost corrections to the leading two-nucleon contributions. All 1/mN -corrections to the
leading three-body contributions to the production operator needed in the calculations are treated on
the same footing as described in section 2.3.3.
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2.3.2 Fourth order two-nucleon contributions

Similar to the leading order graphs displayed in Fig. 2, one has additional contributions at NNLO,
which are displayed as diagram classes a1, a2, a3, a4, and b1 in Fig. 3. These involve the insertion of
one dimension-two operator from the chiral effective Lagrangian. As in the case of the deuteron, only
the operators ∼ 1/2mN , ∼ gA/2mN or ∼ κp,n contribute, while all contributions proportional to the
LECs ci vanish at threshold. All these Feynman diagrams give corrections of the form iT12 = NÔ12

and involve multiples of the generic prefactor N = (egAmN )/(2F
3
π ). They lead to contributions of the

form

M = 2iKq4

2N

〈

Ô12 + Ô21

〉

Ψ
(22)

with

Kq4

2N = −1

2

m3N

mN

1

8π(m3N +Mπ)

N
(2π)32mN

= −K2N
1

4mNMπ
≈ −0.0104 fm3 10

−3

Mπ+

(23)

to account for the phase space and normalization. The prefactor of the 2N contributions at order q4,

Kq4

2N is suppressed considerably compared to the corresponding prefactor at order q3, K2N . This has
to be kept in mind when we discuss the numerical results for the fourth order corrections.

We are now in a position to evaluate the various classes of diagrams, following the calculations
for the deuteron from Refs. [7, 25]. The corrections to diagram (a) in Fig. 2 which are given in
Fig. 3(a1)-(a4) read

iTNN,a112 = (1− 2g2A)
emNgA
2F 3

π

~ǫλ,T · ~σ1
~q ′2

(~τ1 · ~τ2 − τ z1 τ
z
2 )
(

~q ′ · ~q ′ + 2~q ′ · ~p′12
)

,

iTNN,a212 =
emNgA
F 3
π

~ǫλ,T ·
(

(~q ′ + 2~p ′
12 − ~k)~σ1 · ~q ′ + i[~q ′ × ~k](1 + κV )

)

~q ′2
(~τ1 · ~τ2 − τ z1 τ

z
2 ) ,

iTNN,a312 =
emNgA
F 3
π

~ǫλ,T ·
(

~q ′ + 2~p ′
12 − ~k + i[~σ1 × ~k](1 + κV )

)

~σ2 · ~q ′

~q ′2 +M2
π+

(~τ1 · ~τ2 − τ z1 τ
z
2 ) ,

iTNN,a412 = g2A
emNgA
F 3
π

~ǫλ,T ·
(

−(~q ′ + 2~p ′
12 − ~k) + i[~σ1 × (~q ′ − ~k)]

)

~σ2 · ~q ′

~q ′2 +M2
π+

(~τ1 · ~τ2 − τ z1 τ
z
2 ) . (24)

The corrections to diagram (b) in Fig. 2 which are given in Fig. 3(b1) read

iTNN,b112 = −
(

1− 2g2A
) emNgA

2F 3
π

~σ1 · ~q ′′ ~ǫλ,T · (~q ′′ + ~q ′)
(

~q ′′ · ~q ′′ +M2
π+

)

(~q ′ · ~q ′)(~τ1 · ~τ2 − τ z1 τ
z
2 )
(

~q ′ · ~q ′ + 2~q ′ · ~p′12
)

. (25)

with ~q ′ as before and ~q ′′ = ~q ′ − ~k.

2.3.3 1/mN -corrections to leading two-nucleon contributions

Furthermore, there are 1/mN -corrections to leading two-nucleon diagrams some of which are shown
in Fig. 2. They have been worked out within the Q-box framework in Ref. [25]. The corresponding
diagrams a′1, b

′
1, b

′
2, b

′
3, b

′
4, b

′
5, and b

′
6 are displayed in Fig. 4. The boxes indicate the regions where the

two energy denominators whose 1/mN -expansion generates the corrections can appear (see Ref. [25]
for more details).
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For the expressions of the various diagrams, we use the following abbreviations:

ω′ =
√

~q ′2 +M2
π+ and ω′′ =

√

~q ′′2 +M2
π+ . (26)

With that, the correction to diagram (a) in Fig. 2 which are given in Fig. 4(a′1) read

iT
NN,a′1
12 =

emNgA
8F 3

π

~ǫλ,T · ~σ1(ω′ −Mπ)

ω′(ω′ +Mπ)2
~k · (−2~q ′ − 2~p ′

12 +
~k)(~τ1 · ~τ2 − τ z1 τ

z
2 ) , (27)

whereas the various corrections to diagram (b) in Fig. 2 which are given in Fig. 4(b′1)-(b
′
6) take the

form

iT
NN,b′1
12 =

emNgA
16F 3

π

~σ1 · ~q ′′~ǫλ,T · (~q ′′ + ~q ′)(ω′ +Mπ)

ω′ω′′3
(~τ1 · ~τ2 − τ z1 τ

z
2 )

×
(

−~q ′ · ~q ′ − ~q ′ · ~p′12 + 2(~q ′ + ~p′12) · ~k − ~k2

ω′ −Mπ
+
~q ′ · ~q ′ + ~q ′ · ~p′12
ω′ − ω′′ −Mπ

)

,

iT
NN,b′2
12 =

emNgA
16F 3

π

~σ1 · ~q ′′~ǫλ,T · (~q ′′ + ~q ′)(ω′ −Mπ)

ω′ω′′3(ω′ + ω′′ +Mπ)2
(~τ1 · ~τ2 − τ z1 τ

z
2 )

×
(

2ω′′
{

~q ′ · ~q ′ + ~q ′ · ~p′12 − 2(~q ′ + ~p′12) · ~k + ~k2
}

+ (ω′ +Mπ)
{

−2(~q ′ + ~p′12) · ~k + ~k2
})

,

iT
NN,b′3
12 =

emNgA
16F 3

π

~σ1 · ~q ′′~ǫλ,T · (~q ′′ + ~q ′)(ω′ −Mπ)

ω′ω′′3(ω′ + ω′′ +Mπ)2(ω′ + ω′′)2
(~τ1 · ~τ2 − τ z1 τ

z
2 )

×
(

ω′′
{

2(~q ′ + ~p′12) · ~k − ~k2
}

+ 2(ω′ +Mπ)
{

~q ′ · ~q ′ + ~q ′ · ~p′12
}

)

,

iT
NN,b′4
12 =

emNgA
16F 3

π

~σ1 · ~q ′′~ǫλ,T · (~q ′′ + ~q ′)(ω′ +Mπ)

ω′ω′′3(ω′ + ω′′ +Mπ)2(ω′ + ω′′)2
(~τ1 · ~τ2 − τ z1 τ

z
2 )

×
(

ω′′
{

~q ′ · ~q ′ + ~q ′ · ~p′12 − 2(~q ′ + ~p′12) · ~k + ~k2
}

− (ω′ −Mπ)
{

~q ′ · ~q ′ + ~q ′ · ~p′12
}

)

,

iT
NN,b′5
12 =

emNgA
16F 3

π

~σ1 · ~q ′′~ǫλ,T · (~q ′′ + ~q ′)(ω′ +Mπ)

ω′ω′′3(ω′ + ω′′ −Mπ)2
(~τ1 · ~τ2 − τ z1 τ

z
2 )

×
(

2ω′′
{

~q ′ · ~q ′ + ~q ′ · ~p′12 − 2(~q ′ + ~p′12) · ~k + ~k2
}

+ (ω′ −Mπ)
{

−2(~q ′ + ~p′12) · ~k + ~k2
})

,

iT
NN,b′6
12 =

emNgA
16F 3

π

~σ1 · ~q ′′~ǫλ,T · (~q ′′ + ~q ′)(ω′ −Mπ)

ω′ω′′3(ω′ +Mπ)2
(~τ1 · ~τ2 − τ z1 τ

z
2 )

×
(

(ω′ + ω′′ +Mπ)
{

2(~q ′ + ~p′12) · ~k − ~k2
})

. (28)

3 Results and discussion

We are now in a position to evaluate the nuclear S-wave multipoles. They are given as the sum of the
one- and two-nucleon contributions given in the previous section,

E0+ = E1N
0+ + E2N

0+ , L0+ = L1N
0+ + L2N

0+ . (29)

Combining the leading and subleading corrections to the two-nucleon production operators discussed
above with the subleading chiral perturbation theory results for the single-nucleon multipoles at O(p4)
[3, 4, 28]

Eπ
0p

0+ = −1.16× 10−3/Mπ+ , Eπ
0n

0+ = +2.13 × 10−3/Mπ+ ,

Lπ
0p

0+ = −1.35× 10−3/Mπ+ , Lπ
0n

0+ = −2.41 × 10−3/Mπ+ , (30)
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3He 1N (q4) 2N (q3) 1N-boost 2N-static (q4) 2N-recoil (q4) total

E0+ [10−3/Mπ+ ] +1.71(4)(9) −3.95(3) −0.23(1) −0.02(0)(1) +0.01(2)(1) −2.48(11)

L0+ [10−3/Mπ+ ] −1.89(4)(9) −3.09(2) −0.00(0) −0.07(1)(1) +0.07(7)(0) −4.98(12)

3H 1N (q4) 2N (q3) 1N-boost 2N-static (q4) 2N-recoil (q4) total

E0+ [10−3/Mπ+ ] −0.93(3)(5) −4.01(3) −0.35(1) −0.02(1)(1) +0.01(2)(0) −5.28(7)

L0+ [10−3/Mπ+ ] −0.99(4)(5) −3.13(1) −0.02(0) −0.07(0)(1) +0.07(7)(0) −4.14(10)

Table 4: Numerical results for the 3N multipoles. The first error is our estimation of the theoretical
uncertainty resulting from the truncation of the chiral expansion while the second one is the statistical
error from the Monte Carlo integration (with the exception of the 1N contributions as explained in
the text). For the total result only the combined error is given.

we obtain for the threshold multipoles on 3He and on 3H the values listed in Table 4. For Eπ
0p

0+ we
took an average of Refs. [4, 28]. The neutron amplitude uses the updated LECs from [4] based on
the formalism from [4] but is not explicitely given in that paper. Note that the values for the single
nucleon multipoles in Eq. (30) are consistent with the unpolarized data of [29] and a recent calculation
in the chiral unitary approach [30]. The extractions of the proton S-wave photoproduction multipoles
based on CHPT using various approximations show a 5% uncertainty [24]. Consequently, we assign a
5% error to the single-nucleon multipoles.#6

We remark that in the heavy baryon calculations of Refs. [3,4], the physical pion masses have been
used in the kinematics. Moreover, the physical pion masses were used in evaluating the corresponding
loop diagrams. Thus the production as well as the second threshold due to the π+n intermediate state
are correctly accounted for. The same approach is used here. Therefore, the multipole values in Eq.
(30) can indeed be tested in pion production off the tri-nucleon.

In Table 4, adding the first two columns gives the leading one-loop result from Ref. [10]. The fourth
order corrections are given separately for the boost of the single nucleon terms (third column) as well as
the contributions described in sections 2.3.2 and 2.3.3 and referred to as static and recoil, respectively.
The complete one-loop result can be found in the sixth column. The first error given is an estimate
of the theory error from higher orders in chiral EFT, the second error is the statistical error from the
Monte Carlo integration. Notice that the statistical error is negligible compared to theory error. The
5% error from the single-nucleon amplitudes discussed above is not included in the numbers for the
theory error, but appears as the second error of the single nucleon contribution in the table. For the
total result only the combined error is given. Overall, we find that these fourth order corrections for
the electric dipole amplitude E0+ for both tri-nuclear systems come out to be very small, much smaller
than in case of the deuteron. This can be, in part, traced back to the smaller values of the various
form factors (for the boost corrections) and also to the small prefactor Kq4

2N , cf. Eq. (23), for the two-
nucleon contributions. For the longitudinal amplitude L0+, the sum of the fourth order corrections
is consistent with zero within the uncertainties. This can be understood as follows: First, the boost
corrections are proportional to the P-wave multipole P4, which is much smaller than the corresponding
multipoles P1, P3 that appear in the electric dipole amplitude, cf. Eq. (18). Second, there are almost
perfect cancellations between the static and the recoil contributions for both tri-nucleon systems.
These cancellations are accidental in the sense that they can not be traced back to any symmetry or

#6We note that it is misleading to estimate the theory uncertainty from comparing third and fourth order results due
to the abnormally large contribution of the triangle diagram. The theory uncertainty has therefore been estimated from
a comparison of fitting various data sets available and using variations of the ChPT amplitude that account for unitarity
exactly.
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Figure 5: Sensitivity of a0 for
3He in units of 10−6/M2

π+ to the single-neutron multipole Eπ
0n

0+ in units

of 10−3/Mπ+ . The vertical dashed line gives the CHPT prediction for Eπ
0n

0+ and the vertical dotted
lines indicate the 5% error in the prediction. The shaded band indicates the theory error estimated

from the cutoff variation and a 5% error in Eπ
0p

0+ as described in the text.

small prefactor. In summary, we find that the chiral expansion for the S-wave multipoles at threshold
converges fast and that the largest uncertainty remains in the single nucleon production amplitudes.
We also remark that the fourth order corrections to the electric dipole amplitudes of the tri-nucleon
systems are sizably smaller than for the deuteron.

Now, let us concentrate on photoproduction. The threshold S-wave cross section for pion photo-
production a0 is given by

a0 =
|~k |
|~q |

dσ

dΩ

∣

∣

∣

∣

∣

~q=0

= |E0+|2 . (31)

In Fig. 5, we illustrate the sensitivity of a0 to the single-neutron multipole Eπ
0n

0+ . The shaded band
indicates the theory error estimated from the cutoff variation as described above and a 5% error in

Eπ
0p

0+ . As shown above, the uncertainties related to the nuclear effects are of the order of one percent,
i.e. completely negligible. So our estimate of a 10% uncertainty of the 2N contributions in Ref. [10]
driven by the analogy to the deuteron case [6] turns out to be much too conservative. The vertical
dashed line indicates the CHPT prediction Eπ

0n
0+ = 2.13 × 10−3/Mπ+ . Changing this value by ±20%

leads to changes in a0 of about ±30%. Thus, the 3He nucleus is a very promising target to test the
CHPT prediction for Eπ

0n
0+ . On the contrary, neutral pion production on 3H is rather insensitive to

Eπ
0n

0+ : a variation of Eπ
0n

0+ in the range 0 . . . 3 (in units of 10−3/Mπ+) changes a0 only by 1%.
Next we compare our predictions with the available data. The consistency of the CHPT prediction

for the single-neutron multipole with the measured S-wave threshold amplitude on the deuteron from
Saclay and Saskatoon is well established, see Refs. [2, 6]. The reanalyzed measurement of the S-wave
amplitude for 3He at Saclay gives E3 = (−3.5 ± 0.3) × 10−3/Mπ+ [11, 12], which is related to a0
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according to

|E0+|2 = |E3|2
∣

∣

∣

∣

∣

FS−VT

2

∣

∣

∣

∣

∣

2
(

1 +Mπ/mN

1 +Mπ/3mN

)2

. (32)

Here, we have approximated the A = 3 body form factor FA of Argan et al. [12] by the numerically
dominant form factor FS−VT for 3He, cf. Tab. 1. This results in

E0+ = (−2.8± 0.2) × 10−3/Mπ+ , (33)

assuming the same sign as for our 3He prediction in Table 4. In magnitude, the extracted value is
about 25% above the leading one-loop prediction E0+ = −2.24(11) × 10−3/Mπ+ . The discrepancy
is reduced for the fourth order result E0+ = −2.48(11) × 10−3/Mπ+ , which is about 12% below the
experimental value in Eq. (33). Taking into account the errors, our fourth order result is consistent
with the experiment of Argan et al. [12]. Given the model-dependence that is inherent to the analysis of
Ref. [12], it is obvious that a more precise measurement using CW beams and modern detectors is very
much called for. Our calculation establishes a model independent connection between the trinucleon
multipole measured in such an experiment and the single neutron multipole to be extracted.

4 Summary and outlook

In this paper, we have presented a calculation of the subleading two-nucleon operators for threshold
neutral pion photo- and electroproduction off the tri-nucleon systems 3H and 3He. This completes the
one-loop calculation at order O(q4) in the standard heavy baryon counting. The single nucleon con-
tributions to that order and the leading third order two-nucleon contributions were already evaluated
in the corresponding letter [10]. The production operator was evaluated in the framework of chiral
nuclear effective field theory, in line with the earlier calculations for production off the deuteron [5–7].
To this order, it gets both one- and two-body contributions. Here, we have given explicit expressions
for the fourth order two-nucleon contributions stemming from boost corrections for pion production
off a single nucleon (such contributions only arise from the fact that in a nucleus the threshold for
pion production is lowered as compared to the nucleon case), from static 2N contributions with one
insertion from the dimension two chiral pion-nucleon Lagrangian and from recoil corrections to the
pion- and nucleon propagators. We used the chiral wave functions of Refs. [17, 18] to calculate the
S-wave 3N multipoles E0+ and L0+. These wave functions are consistent with the pion production
operator.

We have shown that all corrections at fourth order in the standard heavy baryon counting are
very small, a few percent for the tri-nucleon electric dipole amplitudes and essentially vanishing for
the corresponding longitudinal amplitudes. This suppression can be explained by very small boost
correction and an accidental cancellation between the static and the recoil contibutions. We remark
that these corrections are sizably smaller than in the deuteron case [6]. However, we note that the the
role of nucleon recoil, accounting for the new scale χ =

√
MπmN ≃ 340 MeV, needs to be investigated

in more detail in view of the findings of Refs. [31, 32].
The theoretical uncertainty associated with the cutoff variation in the employed wave functions

appears to be small (of the order of 3%). The dominant theoretical error at this order stems from the
threshold pion production amplitude off the proton and the neutron, which is estimated to be about
5%. Consequently, we have explored the possibility to extract the elementary neutron multipole Eπ

0n
0+

from a neutral pion photoproduction measurement off 3He. We found indeed a large sensitivity of the
E0+ amplitude to Eπ

0n
0+ . Given the very small uncertainty of the nuclear corrections as shown here,

3He appears to be a promising target to test the counterintuitive CHPT prediction for Eπ
0n

0+ [3, 4].
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We have also shown that our prediction for the 3He S-wave multipole E0+ is roughly consistent
with the value deduced from the old Saclay measurement of the threshold cross section [12]. A new
measurement using modern technology and better methods to deal with few-body dynamics is urgently
called for. The rapid energy dependence of Eπ

0n
0+ due to the close by charged pion production threshold

presents a challenge for its experimental extraction. An calculation of pion production above threshold
would be valuable in this context.

There are many other natural extensions of this work. They include investigating higher orders, the
extension to virtual photons and pion electroproduction, production of charged pions, and considering
heavier nuclear targets such as 4He. Further work in these directions is in progress.
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