13,735 research outputs found

    This Place Of Mine

    Get PDF

    Null-vectors in Integrable Field Theory

    Get PDF
    The form factor bootstrap approach allows to construct the space of local fields in the massive restricted sine-Gordon model. This space has to be isomorphic to that of the corresponding minimal model of conformal field theory. We describe the subspaces which correspond to the Verma modules of primary fields in terms of the commutative algebra of local integrals of motion and of a fermion (Neveu-Schwarz or Ramond depending on the particular primary field). The description of null-vectors relies on the relation between form factors and deformed hyper-elliptic integrals. The null-vectors correspond to the deformed exact forms and to the deformed Riemann bilinear identity. In the operator language, the null-vectors are created by the action of two operators \CQ (linear in the fermion) and \CC (quadratic in the fermion). We show that by factorizing out the null-vectors one gets the space of operators with the correct character. In the classical limit, using the operators \CQ and \CC we obtain a new, very compact, description of the KdV hierarchy. We also discuss a beautiful relation with the method of Whitham.Comment: 36 pages, Late

    A Classification of random Dirac fermions

    Full text link
    We present a detailed classification of random Dirac hamiltonians in two spatial dimensions based on the implementation of discrete symmetries. Our classification is slightly finer than that of random matrices, and contains thirteen classes. We also extend this classification to non-hermitian hamiltonians with and without Dirac structure.Comment: 15 pages, version2: typos in the table of classes are correcte

    String Breaking in Four Dimensional Lattice QCD

    Get PDF
    Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on an Athlon 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse (but O(a2a^2) improved) lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R \geq approximately 1 fm.Comment: 16 pages, 5 figures, Latex (deleted extraneous eps figure file

    A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems

    Full text link
    In this paper we introduce a new kind of Lax-Oleinik type operator with parameters associated with positive definite Lagrangian systems for both the time-periodic case and the time-independent case. On one hand, the new family of Lax-Oleinik type operators with an arbitrary uC(M,R1)u\in C(M,\mathbb{R}^1) as initial condition converges to a backward weak KAM solution in the time-periodic case, while it was shown by Fathi and Mather that there is no such convergence of the Lax-Oleinik semigroup. On the other hand, the new family of Lax-Oleinik type operators with an arbitrary uC(M,R1)u\in C(M,\mathbb{R}^1) as initial condition converges to a backward weak KAM solution faster than the Lax-Oleinik semigroup in the time-independent case.Comment: We give a new definition of Lax-Oleinik type operator; add some reference

    Lattice results for the decay constant of heavy-light vector mesons

    Get PDF
    We compute the leptonic decay constants of heavy-light vector mesons in the quenched approximation. The reliability of lattice computations for heavy quarks is checked by comparing the ratio of vector to pseudoscalar decay constant with the prediction of Heavy Quark Effective Theory in the limit of infinitely heavy quark mass. Good agreement is found. We then calculate the decay constant ratio for B mesons: fB/fB=1.01(0.01)(0.01+0.04)f_{B^*}/f_B= 1.01(0.01)(^{+0.04}_{-0.01}). We also quote quenched fB=177(6)(17)f_{B^*}=177(6)(17) MeV.Comment: 11 pages, 3 postscript figs., revtex; two references adde

    Electronic control of the spin-wave damping in a magnetic insulator

    Get PDF
    It is demonstrated that the decay time of spin-wave modes existing in a magnetic insulator can be reduced or enhanced by injecting an in-plane dc current, IdcI_\text{dc}, in an adjacent normal metal with strong spin-orbit interaction. The demonstration rests upon the measurement of the ferromagnetic resonance linewidth as a function of IdcI_\text{dc} in a 5~μ\mum diameter YIG(20nm){\textbar}Pt(7nm) disk using a magnetic resonance force microscope (MRFM). Complete compensation of the damping of the fundamental mode is obtained for a current density of 31011A.m2\sim 3 \cdot 10^{11}\text{A.m}^{-2}, in agreement with theoretical predictions. At this critical threshold the MRFM detects a small change of static magnetization, a behavior consistent with the onset of an auto-oscillation regime.Comment: 6 pages 4 figure

    Dynamic coupling of photoacclimation and photoinhibition in a model of microalgae growth.

    Get PDF
    International audienceThe development of mathematical models that can predict photosynthetic productivity of microalgae under transient conditions is crucial for enhancing large-scale industrial culturing systems. Particularly important in outdoor culture systems, where the light irradiance varies greatly, are the processes of photoinhibition and photoacclimation, which can affect photoproduction significantly. The former is caused by an excess of light and occurs on a fast time scale of minutes, whereas the latter results from the adjustment of the light harvesting capacity to the incoming irradiance and takes place on a slow time scale of days. In this paper, we develop a dynamic model of microalgae growth that simultaneously accounts for the processes of photoinhibition and photoacclimation, thereby spanning multiple time scales. The properties of the model are analyzed in connection to PI-response curves, under a quasi steady-state assumption for the slow processes and by neglecting the fast dynamics. For validation purposes, the model is calibrated and compared against multiple experimental data sets from the literature for several species. The results show that the model can describe the difference in photosynthetic unit acclimation strategies between Dunaliella tertiolecta (n-strategy) and Skeletonema costatum (s-strategy)

    A mechanistic modelling and data assimilation approach to estimate the carbon/chlorophyll and carbon/nitrogen ratios in a coupled hydrodynamical-biological model

    Get PDF
    The principal objective of hydrodynamical-biological models is to provide estimates of the main carbon fluxes such as total and export oceanic production. These models are nitrogen based, that is to say that the variables are expressed in terms of their nitrogen content. Moreover models are calibrated using chlorophyll data sets. Therefore carbon to chlorophyll (C:Chl) and carbon to nitrogen (C:N) ratios have to be assumed. This paper addresses the problem of the representation of these ratios. In a 1D framework at the DYFAMED station (NW Mediterranean Sea) we propose a model which enables the estimation of the basic biogeochemical fluxes and in which the spatio-temporal variability of the C:Chl and C:N ratios is fully represented in a mechanical way. This is achieved through the introduction of new state variables coming from the embedding of a phytoplankton growth model in a more classical Redfieldian NNPZD-DOM model (in which the C:N ratio is assumed to be a constant). Following this modelling step, the parameters of the model are estimated using the adjoint data assimilation method which enables the assimilation of chlorophyll and nitrate data sets collected at DYFAMED in 1997.Comparing the predictions of the new Mechanistic model with those of the classical Redfieldian NNPZD-DOM model which was calibrated with the same data sets, we find that both models reproduce the reference data in a comparable manner. Both fluxes and stocks can be equally well predicted by either model. However if the models are coinciding on an average basis, they are diverging from a variability prediction point of view. In the Mechanistic model biology adapts much faster to its environment giving rise to higher short term variations. Moreover the seasonal variability in total production differs from the Redfieldian NNPZD-DOM model to the Mechanistic model. In summer the Mechanistic model predicts higher production values in carbon unit than the Redfieldian NNPZD-DOM model. In winter the contrary holds

    Consistency in Regularizations of the Gauged NJL Model at One Loop Level

    Get PDF
    In this work we revisit questions recently raised in the literature associated to relevant but divergent amplitudes in the gauged NJL model. The questions raised involve ambiguities and symmetry violations which concern the model's predictive power at one loop level. Our study shows by means of an alternative prescription to handle divergent amplitudes, that it is possible to obtain unambiguous and symmetry preserving amplitudes. The procedure adopted makes use solely of {\it general} properties of an eventual regulator, thus avoiding an explicit form. We find, after a thorough analysis of the problem that there are well established conditions to be fulfiled by any consistent regularization prescription in order to avoid the problems of concern at one loop level.Comment: 22 pages, no figures, LaTeX, to appear in Phys.Rev.
    corecore