
HAL Id: hal-01247049
https://hal.inria.fr/hal-01247049

Submitted on 15 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic coupling of photoacclimation and
photoinhibition in a model of microalgae growth

Andreas Nikolaou, Philipp Hartmann, Antoine Sciandra, Benoît Chachuat,
Olivier Bernard

To cite this version:
Andreas Nikolaou, Philipp Hartmann, Antoine Sciandra, Benoît Chachuat, Olivier Bernard. Dy-
namic coupling of photoacclimation and photoinhibition in a model of microalgae growth. Journal of
Theoretical Biology, Elsevier, 2016, 390, pp.61 - 72. �10.1016/j.jtbi.2015.11.004�. �hal-01247049�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49442721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01247049
https://hal.archives-ouvertes.fr


Dynamic Coupling of Photoacclimation and Photoinhibition in a1

Model of Microalgae Growth2

Andreas Nikolaoua,b,∗, Philipp Hartmannb,c,∗, Antoine Sciandrab, Benôıt Chachuata,∗∗,3
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Abstract10

The development of mathematical models that can predict photosynthetic productivity

of microalgae under transient conditions is crucial for enhancing large-scale industrial cultur-

ing systems. Particularly important in outdoor culture systems, where the light irradiance

varies greatly, are the processes of photoinhibition and photoacclimation, which can affect

photoproduction significantly. The former is caused by an excess of light and occurs on a

fast time scale of minutes, whereas the latter results from the adjustment of the light har-

vesting capacity to the incoming irradiance and takes place on a slow time scale of days. In

this paper, we develop a dynamic model of microalgae growth that simultaneously accounts

for the processes of photoinhibition and photoacclimation, thereby spanning multiple time

scales. The properties of the model are analyzed in connection to PI-response curves, under

a quasi steady-state assumption for the slow processes and by neglecting the fast dynamics.

For validation purposes, the model is calibrated and compared against multiple experimen-

tal data sets from the literature for several species. The results show that the model can

describe the difference in photosynthetic unit acclimation strategies between D. tertiolecta

(n-strategy) and S. costatum (s-strategy).

Keywords: microalgae, photosynthesis modeling, Droop model, Han model, acclimation11

strategy, PI curves12

∗Equal contributors
∗∗Corresponding author

Preprint submitted to Journal of Theoretical Biology October 30, 2015



1. Introduction13

Microalgae are often considered a promising alternative for production of renewable en-14

ergy [35]. Claimed advantages of this approach are a higher photosynthetic yield compared15

to field crops, a reduction in fresh water consumption, and independence to agriculturally us-16

able land [36]. These advantages could lead to large-scale production of algal biomass that is17

not in direct competition with food production. Moreover, microalgae culture systems can be18

coupled with wastewater treatment technologies [29], can produce high added-value products19

such as cosmetics, pharmaceuticals and nutraceuticals [6], and can even contribute to CO220

mitigation due to their inherent ability to fix carbon during photosynthesis [32]. Nonethe-21

less, numerous problems need to be overcome on the path to a sustainable large-scale biofuel22

production. Optimizing the entire production chain in order to reduce the production costs23

as well as the environmental impact presents many challenges, and among them improv-24

ing the algal biomass production efficiency has top priority. As well as developing a better25

understanding of the key mechanisms underlying photosynthesis, the development of more26

accurate mathematical models combining mass-conservation principle and phenomenological27

knowledge holds much promise in this context [5].28

Two key processes are involved in the way light conditions affect the photosynthetic yield.29

Photoinhibition causes a loss of photosynthetic yield due to an excess of photons, which30

damage some of the key proteins in the photosynthetic apparatus. Photoacclimation, the31

process by which microalgae adjust their pigment content and composition to light intensity,32

alters the rate of photosynthetic production. These two processes act on different time33

scales: photoinhibition occurs on a time scale of minutes, whereas photoacclimation acts on34

a time scale of days. In order to achieve optimal microalgae productivity, understanding the35

processes of nutrient assimilation, photoinhibition and photoacclimation, together with their36

interactions, is thus paramount. A number of mathematical models are available that account37

for photoacclimation and nitrogen limitation at the slow time scale [15, 2, 16], yet they neglect38

the dynamics of photoinhibition. Conversely, models describing photoinhibition in the fast39

time scale have also been proposed [10, 17], but they do not account for photoacclimation.40
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The model by Camacho and coworkers [14], inspired from [37, 38], describes both photoin-41

hibition and photoacclimation in nitrogen replete conditions. In contrast, the main objective42

of this paper to develop a dynamic model of microalgae growth that couples photoinhibi-43

tion and photoacclimation under nitrogen limitation. With regards to carbon and nitrogen44

uptake, our model builds upon two well established models, which have been validated exper-45

imentally and whose mathematical properties are well established. Nutrient assimilation is46

described by the well-accepted and validated Droop model [8]. Photoinhibition is described47

by the model proposed by Han [17], originating in the work of Eilers and Peeters [10] who48

first introduced the concept of photosynthetic factories—also known as photosynthetic units.49

A related, yet simpler, coupling between a photoinhibition model and the Droop model has50

been studied by Hartmann et al. [19]. An extension of this coupling incorporating photoac-51

climation processes constitutes the main novelty of the developed model. Specifically, we52

propose a modification of the photosynthesis rate and pigment synthesis rate expressions to53

account for photoacclimation effects, and we express both the effective cross-section and the54

number of photosynthetic units—which are parameters in the Han model—as functions of55

the chlorophyll content by means of empirical relations [12]. This approach leads to a simple56

expression for the photosynthesis rate, which is readily amenable to mathematical analysis57

under a quasi-steady-state approximation. This structure also makes the model easier to58

calibrate, and we illustrate its prediction capabilities for three different species based on59

literature data.60

The remainder of this paper is organized as follows. Existing models of slow and fast61

processes, including nutrient limited growth, photoacclimation and photoinhibition, are first62

reviewed in Sect. 2. The dynamic model coupling these processes is described in Sect. 3, and63

the properties of the resulting PI-response model are analyzed. A calibration of the coupled64

model against several experimental data sets from the literature is presented in Sect. 4,65

followed by a discussion in Sect. 5. Finally, Sect. 6 concludes the paper and draws future66

research directions.67
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2. Modeling of Slow and Fast Processes in Microalgae68

2.1. Nutrient-Limited Growth – The Droop Model69

Droop [7] first observed that microalgae keep growing for some time after nutrients have70

been depleted. Monod kinetics are unable to model this behavior and therefore are not suit-71

able for predicting microalgae growth under nutrient limitation. A better way to represent72

nutrient-limited growth is by separating the nutrient uptake rate, denoted by ρ hereafter,73

from the growth rate, denoted by µ. This idea was followed by Droop [7, 8] in relating74

the growth rate to the internal elemental nutrient quota. Since its introduction, the Droop75

model has been widely studied [22, 3, 34] and thoroughly validated [8, 28, 4, 34]. A key76

feature of our model in Sect. 3 is to build upon this model in order to inherit its structural77

properties.78

In a continuous and homogeneous microalgae culture, the mass-balance equations for79

the nutrient (inorganic nitrogen) concentration s [gN m−3] in the bulk phase, the biomass80

concentration x [gC m−3], and the carbon-specific nitrogen quota q [gN g−1C ] of the cells are81

given by82

ṡ = D sin − ρ(s, q)x−D s

ẋ = µ(q, ·)x−Dx−Rx

q̇ = ρ(s, q)− µ(q, ·) q ,

(1)83

with D [s−1] and R [s−1] denoting the dilution rate and the endogenous respiration rate,84

respectively; and sin [gN m−3], the nutrient concentration in the feed.85

Recently, an extension of the Droop model has been proposed by Bernard [2] accounting86

for the effect of light conditions on the growth rate µ in the form87

µ(q, ·) = µ̄

(
1− Q0

q

)
φ(·), (2)88

where µ̄ [s−1] stands for the maximal growth rate, i.e., the growth rate reached under non-89

limiting conditions; Q0 [gN g−1C ], the minimal cell quota, so that µ(Q0, ·) = 0 and q ≥ Q0;90

and, φ(·) is a saturation function. In particular, an expression of φ(·) will be developed in91

Sect. 3 that accounts for the state of the photosynthetic units (PSUs).92

4



The nutrient uptake rate ρ, on the other hand, can be expressed as [16]93

ρ(s, q) = ρ̄
s

s+ ks

(
1− q

Ql

)
, (3)94

where ρ̄ [gN g−1C s−1] stands for the maximal nutrient uptake rate; ks [gN m−3], the half-95

saturation constant for substrate uptake; and Ql [gN g−1C ], the limit quota for the nitrogen96

uptake, so that ρ(s,Ql) = 0 and q ≤ Ql, with equality corresponding to nutrient-replete97

conditions.98

2.2. Pigment Content99

Photoacclimation is the mechanism by which both the chlorophyll content and the pig-100

ment composition change in response to variations in the light irradiance. Such changes take101

place on a time scale of days, and it has been suggested that microalgae use photoacclimation102

as a means to optimize their growth at low irradiance as well as to minimize damage at high103

irradiance [12].104

One way to describe photoacclimation is by accounting for the change in the chlorophyll105

content over time. Following Bernard [2], the chlorophyll concentration, c [gchl m−3], is106

assumed to be proportional to cellular protein concentration as a first approximation, which107

is itself represented by the particulate nitrogen concentration x q:108

c = ψ(Ig)x q, (4)109

where Ig [µE m−2 s−1] represents the light irradiance at which the cells are acclimated,110

also called growth irradiance. Introducing the carbon-specific chlorophyll quota θ := c/x111

[gchl g−1C ], the foregoing relation can be rewritten in the form112

θ = ψ(Ig) q . (5)113

Here, we choose to express ψ(·) in the form of the hyperbolic function114

ψ(Ig) = ψ̄
kI

Ig + kI
, (6)115

with parameters ψ̄ [gchl g−1N ] and kI [µE m−2 s−1]. Moreover, the dynamic evolution of Ig is116
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related to the current light irradiance I by the following equation117

İg = δ µ(q, ·) (I − Ig) , (7)118

thereby assuming that the acclimation rate is proportional to the irradiance difference (I−Ig)119

as well as to the current growth rate µ(·), with the constant proportionality coefficient δ [–].120

On the whole, a change in the current irradiance I affects Ig via (7), modifying the chlorophyll121

quota θ via (5) in turn.122

2.3. Photosynthetic Production and Photoinhibition – The Han Model123

The Han model [17], which is inspired by the model of Eilers and Peeters [9], describes124

the effect of light irradiance on microalgae growth. This model considers the damage of key125

proteins in PSUs to be the main contribution to photoinhibition. Particularly appealing126

in the Han model is the description of complex photosynthetic processes in terms of three127

possible states of the PSUs only, namely: open, A; closed, B; and, inhibited, C.128

The equations giving the rates of change in the fractions of open, closed and inhibited129

PSUs are in order:130

Ȧ = −I σ A+
B

τ

Ḃ = I σ A− B

τ
+ kr C − kd σ I B

Ċ = −kr C + kd σ I B ,

(8)131

with initial conditions such that A(0) +B(0) + C(0) = 1. A number of remarks are:132

• Photosynthetic production is described by the transition between open state and closed133

state. Excitation is assumed to occur at a rate of σI, with σ [m2 µE−1] the effective134

cross-section of the PSUs, whereas deexcitation is assumed to occur at a rate of 1
τ
,135

with τ [s] the turnover time of the electron transport chain.136

• Photoinhibition occurring at high light irradiance corresponds to the transition from137

closed state to inhibited state. This process is assumed to occur at a rate of kdσI,138

with kd [–] a damage constant. The reverse transition from inhibited state to closed139
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state accounts for the repair of damaged PSUs by enzymatic processes in the cell, a140

mechanism that is assumed to occur at a constant rate kr [s−1].141

The Han model provides the second brick in our model in Sect. 3, also with the objective142

of keeping its structural properties. In particular, an interesting property of the Han model143

is that the fractions of open, closed and inhibited states can be computed analytically from144

(8) as a function of the irradiance I at steady state. For instance, the steady-state expression145

A∞ for the open state A is given by:146

A∞(I) =
1

1 + τ σ I +K τ σ2 I2
, (9)147

with K := kd/kr.148

3. Multi-Scale Model of Microalgae Growth Coupled with Photoinhibition and149

Photoacclimation150

The proposed model couples three dynamic processes, namely (i) the PSU dynamics,151

(ii) the dynamics of intracellular nitrogen content, and (iii) the dynamics of chlorophyll152

content. These processes span four different timescales ranging from milliseconds for the153

open-closed dynamics of the PSUs up to several days for the dynamics of intracellular nitro-154

gen quota q.155

3.1. Coupling Between Growth, Photoinhibition and Photoacclimation156

Our model builds upon the Droop-Han model of Hartmann et al. [19] and incorpo-157

rates photoacclimation processes via the dynamics of the chlorophyll quota θ introduced in158

Sect. 2.2. More specifically, we account for two possible ways that the term φ(·) in (2) can159

depend on θ. The first effect is a direct linear dependency of photosynthesis efficiency on160

the chlorophyll content, which is in agreement with the work of Faugeras et al. [13]. Since161

the probability of a photon encountering an open state is proportional to AI, a second, in-162

direct effect is via the dependence of the dynamics of A on θ. This latter dependency results163

from the fact that the parameter σ introduced in the Han model (8) can itself depend on164

the current acclimation state. Indeed, Falkowski and Raven [12] describe photoacclimation165
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as a process that can follow either one of two strategies: the n-strategy corresponds to a166

change in the density (per biomass unit) of PSUs, denoted by N subsequently; the s-strategy167

corresponds to a change in the size of the PSUs, and is thus directly related to the effective168

cross-section σ. In practice, chlorophyll is thus used either to build new PSUs or to increase169

the size of the antenna in existing PSUs. These two acclimation strategies run concurrently,170

and both can be described by defining N(·) and σ(·) as functions of the chlorophyll quota θ.171

Such relationships are further investigated in Sect. 3.3.172

Based on the above, the growth rate µ can be modeled as:

µ(q, θ, I) = ᾱ

(
1− Q0

q

)
θ A(I, θ) I ,

where ᾱ is a constant parameter. At this point, we shall introduce the rate of carbon uptake173

per chlorophyll unit, µchl [gC g−1chl s−1], as174

µchl(q, θ, I) =
µ(q, ·)
θ

= ᾱ

(
1− Q0

q

)
A(I, θ) I , (10)175

which is also known as the chlorophyll-specific photosynthesis rate.176

3.2. Structural Analysis of the PI Response177

In experiments assessing photosynthetic efficiency of microalgae, the cells are photoac-178

climated to a given light irradiance Ig for a sufficiently long time and under nutrient replete179

conditions, before exposing them to various light irradiances I. The instantaneous growth180

rates obtained under these conditions—ideally via consideration of the carbon fixation rate,181

but often based on the O2 production rate too—are measured and yield the so-called PI-182

response curve when plotted against I.183

A common assumption about PI-response curve experiments is that they are fast enough184

for photoacclimation, substrate internalization and growth to be negligible; that is, time185

variations in the variables θ, q and x can all be neglected. In contrast, variations in the186

fractions of open, closed and inhibited states in the Han model can be considered fast in the187

time scale of PI-response curve experiments, and one can thus assume that the variables A,188

B and C reach their steady states as in (9), without significantly impairing the PI response189
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predictions (quasi-steady-state approximation). Under nutrient-replete conditions, these ap-190

proximations lead to the following simplification of the chlorophyll-specific photosynthesis191

rate (10):192

µPI
chl(θ, I) = ᾱ

(
1− Q0

Qmax(·)

)
I

1 + τ σ(θ) I +K τ σ2(θ) I2
, (11)193

where Qmax(·) [gN g−1C ] denotes the maximal value of the nitrogen internal quota q under194

nutrient replete conditions, a value that typically depends on the growth irradiance Ig [2].195

A further reformulation gives196

µPI
chl(θ, I) = α(·) I

1 + τ σ(θ) I +K τ σ2(θ) I2
, (12)197

with α(·) := ᾱ
(

1− Q0

Qmax(·)

)
[gC g−1chl µE−1 m2] denoting the initial slope of the PI response198

curve, i.e., the rate of change of µchl with respect to the light irradiance I for a vanishing199

irradiance.200

Many authors concur to say that, for many microalgae species, the initial slope α(·)201

can be considered to be independent of the value of θ [23]. Nonetheless, we like to note202

that the constant initial slope assumption is still debated; see, for instance, the paper203

by Richardson et al. [27], where microalgae acclimation strategies are divided into six204

different categories based on photosynthesis-irradiance response data. We shall come205

back to this important point later on in Sect. 5, where it is argued that certain variations206

in initial slopes may as well be explained by transient effects in the fraction of inhibited PSUs.207

208

In the remainder of this subsection, we investigate structural properties of the PI-response209

curve under the foregoing assumptions of time-scale separation and constant initial slope.210

The optimal irradiance value I? maximizing µPI
chl can be determined from (12) as211

I?(θ) :=
1

σ(θ)
√
Kτ

. (13)212

In turn, the maximal productivity rate µPI?
chl can be expressed in the form213

µPI?
chl (θ) := α

√
Kτ

τ + 2
√
Kτ

I?(θ) . (14)214
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The following property follows readily from (14), provided that the Han model parameters215

τ and K are independent of the acclimation state:216

Property 1. The maximal growth rate µPI?
chl is proportional to the optimal irradiance I?217

regardless of the pre-acclimated state or the growth irradiance.218

Although a direct consequence of the constant initial slope assumption, this property does219

not depend on a particular choice of the relationship between σ(·) and θ. Moreover, it is220

readily tested using data from experimental PI curves corresponding to different acclimation221

states—see Sect. 4.1.222

3.3. Quantitative Analysis of the PI Response223

In order to make quantitative predictions of the PI-response curve or, more generally, for224

numerical simulation of the coupled model, relationships for the effective cross-section σ(·)225

and the density of PSUs N(·) in terms of the chlorophyll quota θ must be specified.226

We start by noting that σ(θ) and N(θ) can both be related to the average size of a PSU227

in terms of chlorophyll content per PSU, denoted by Γ(θ) subsequently. A simple relation228

for N(θ) is:229

Γ(θ)N(θ) = θ . (15)230

On the other hand, the relation between σ(θ) and Γ(θ) or N(θ) is highly complex. As well

as the geometric shape of the photosynthetic antennas, this relation must take into account

the packaging effect and the synthesis of other accessory pigments. Here, we choose to use

a simple relationship, whereby σ(·) is expressed as a power law of Γ:

σ(θ) = σ0 Γ(θ)γ ,

with parameters σ0 and γ.231

Now, assuming a general power law relationship between σ and θ as:232

σ(θ) = β θκ , (16)233
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and using (15), the density of PSUs is expressed as:234

N(θ) =

(
σ0
β

)1/γ

θ1−κ/γ , (17)235

and similarly the average size of a PSU is given by:236

Γ(θ) =

(
β

σ0

)1/γ

θκ/γ . (18)237

Besides simplicity, expressions of σ(θ), N(θ) and Γ(θ) in the form of power laws are also238

plausible from a biophysical standpoint. It is indeed expected that σ(θ) should be a mono-239

tonically increasing function of θ, due to a higher probability of photons absorption. In240

contrast, the expressions of N(θ) and Γ(θ) remain flexible enough with respect to θ, and241

so the resulting acclimation model is capable of discrimination between the s-strategy and242

n-strategy of PSU acclimation.243

We note that Camacho and coworkers [14] have used a similar modeling approach and244

proposed a monotonically increasing relation between the chlorophyll content θ and the245

density of PSUs N(θ) (which are both decreasing functions of the growth irradiance Ig).246

Our model is more flexible in the sense that it enables strategies whereby the chlorophyll247

content increases while the density of PSUs decreases.248

Substituting the power law (16) in the expression of I? in (13), and log-linearizing the249

resulting expression gives:250

log I?(θ) = −κ log θ − log(β
√
Kτ) . (19)251

The following property follows directly from (19):252

Property 2. The exponent κ in the power laws (16) corresponds to the (negative) slope in253

a log-log plot of I? versus θ.254

Like Property 1, the linearity of the relationship between log I? and log θ can be readily255

tested using data from experimental PI curves corresponding to different acclimation states.256

257
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To summarize, a complete expression of the model predicting the PI responses of a given258

microalgae at various pre-acclimated states is:259

µPI
chl(q, θ, I) = ᾱ

(
1− Q0

Qmax(·)

)
I

1 + τ β θκ I +K τ β2 θ2κ I2
. (20)260

This expression is of the Haldane type with respect to the light intensity I, and it comprises261

the following parameters: K and τ from the Han model; β and κ from the acclimation262

model; and the initial slope ᾱ together with the minimal and maximal nitrogen quotas Q0263

and Qmax—or alternatively α in its simplified version.264

4. Calibration and Confidence Analysis using Data Sets from the Literature265

A calibration of the new features in the coupled model is carried out in this section, using266

experimental data sets from the works of Anning et al. [1] and Falkowski and Owens [11]. The267

focus is on the chlorophyll-specific photosynthesis rate (20), the density and size acclimation268

laws (17)-(18), and the saturation function ψ in the nitrogen-quota-to-chlorophyll-quota269

relationship (5).270

4.1. Data for Skeletonema costatum271

Experimental data by Anning et al. [1] are for the diatom Skeletonema costatum. They272

comprise two acclimation states at different growth irradiances Ig, namely 50 µE m−2 s−1273

(LL) and 1500 µE m−2 s−1 (HL). The LL irradiance corresponds to a chlorophyll quota of274

θ = 0.082 gchl g
−1
C , and the HL irradiance to θ = 0.018 gchl g

−1
C . Measurements of the number275

and size of PSUs are also available for four acclimation states in Falkowski and Owens [11].276

Only the number of photosystems I (PSI) is reported and we assume the number of PSUs277

to be proportional here.278

Calibration of PI-Response Curves. We neglect variations of the term α in (20) as a first279

approximation, and we consider a nonlinear regression approach based on least-square mini-280

mization to estimate the values of parameters β, κ and α. On the other hand, we use default281

values for the Han model parameters kr, kd and τ ; these values are obtained by averaging282

over the parameter ranges reported in [18] and can be found in Table I.283
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Table I: Default parameter values in the Han model and parameter estimates in the photosynthesis rate (20)
for S. costatum.

Param. Value Source
τ 5.50× 10−3 [s] Ref. [18]
kr 1.40× 10−4 [s−1] Ref. [18]
kd 5.00× 10−6 [–] Ref. [18]
α 1.60× 10−2 [gC g−1chl µE

−1 m2] estimated

β 4.92× 10−1 [µE−1 m2 g
1/κ
chl g

−1/κ
C ] estimated

κ 4.69× 10−1 [–] estimated

In order to certify global optimality of the parameter estimates, we use the global opti-284

mization solver BARON [33] in the GAMS modeling environment. The resulting parameter285

estimates are given in Table I, and the fitted PI-response curves (20) are plotted against the286

available experimental data in Fig. 1. The predictions are in excellent agreement with this287

experimental data sets at both light irradiances, also with regards to Property 1, thereby288

providing a first validation of the structural assumptions in (20).289

Figure 1: PI-response curves for S. costatum based on the data by Anning et al. [1]. The blue and red points
correspond to acclimation at LL and HL, respectively. The predicted PI responses are depicted in gray solid
lines. The dashed line connects the maxima of both PI curves per Property 1.

In order to assess the confidence of the parameter estimates in Table I, we apply set-290

membership parameter estimation in the bounded-error sense [21]. To conduct the analysis,291

we consider variations around the available photosynthesis rate measurements, here vari-292
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ations of ±5%. A large number of scenarios is generated by sampling the resulting mea-293

surement ranges—using Sobol sequences and assuming no correlation between the different294

measurements—and globally optimal estimates for β, κ and α are then computed for every295

scenario. This way, we obtain the set of all possible parameter values that are consistent296

with the available measurements within a ±5% error.297

The results obtained for the data set by Anning et al. [1] are shown in Fig. 2. Projec-298

tions of the confidence region onto the (β, κ), (β, α) and (κ, α) subspaces provide parameter299

confidence ranges as β ∈ [0.45, 0.54], κ ∈ [0.44, 0.5] and α ∈ [0.0158, 0.0172]. Moreover,300

these projections reveal the existence of a significant correlation between the parameters β301

and κ of the acclimation model, whereas correlations of β or κ with α are rather small. The302

envelopes of both PI-response curves obtained for parameter values in the confidence region303

are shown on the bottom-right plot of Fig. 2 as well, confirming the good agreement with304

the experimental data.305

Calibration of Density and Size Acclimation Laws. Since experimental information is avail-306

able for both the density and size of PSUs at four different acclimation states, values of the307

acclimation parameters σ0 and κ in the power laws (17)-(18) can be estimated for this data308

set too. Note that these relationships can be rewritten in the form309

1/γ log

(
σ0
β

)
− κ/γ log θ = logN − log θ ,310

1/γ log

(
σ0
β

)
− κ/γ log θ = − log Γ ,311

thus making it possible to use a simple linear regression approach for estimating the values312

of 1/γ log
(
σ0
β

)
and κ/γ. Estimates for the parameters σ0 and κ, as reported in Table II,313

can be obtained in turn by using the estimates for β, κ and α in Table I.314

Table II: Parameter estimates in the density and size acclimation laws (17)-(18) for S. costatum.

Parameter Value

σ0 1.63× 10−1 [µE−1 m2 g−γchl PSUγ ]
γ 1.18× 10−1 [–]
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Figure 2: Confidence region of the parameter estimates β, κ and α with ±5% deviations and corresponding
envelopes of PI curves for S. costatum.

Following a set-membership estimation approach, confidence in the foregoing parameter315

estimates is assessed by computing the set of all values for σ0 and κ that are consistent316

with the available measurement of density and size of PSU (within variations of ±5%), while317

simultaneously accounting for the uncertainty in the values of β, κ and α (Fig. 2). The318

resulting confidence region is shown on the left plot in Fig. 3, and the set of corresponding319

model fits for the experimental data on the right plot. Parameter confidence ranges are320

obtained as σ0 ∈ [0.12, 0.51] and γ ∈ [0.08, 0.39]. Despite being quite conservative, these321

bounds allow to confidently conclude that the parameter γ is indeed positive for S. costatum.322

This finding will be discussed further in Sect. 5.323
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Figure 3: Confidence region of the parameter estimates γ and σ0 for the measurement data ranges of PSU
size and number (left plot) and corresponding fit envelopes (right plots) for S. costatum.

4.2. Data for Dunaliella tertiolecta324

Experimental data by Falkowski and Owens [11] are for the chlorophyte Dunaliella ter-325

tiolecta. Amongst the available data, four PI curves are selected that were not affected by326

‘bleaching’, corresponding to acclimation states at growth irradiances Ig of 60 µE m−2 s−1327

(L1), 120 µE m−2 s−1 (L2), 200 µE m−2 s−1 (L3), and 400 µE m−2 s−1 (L4). Measurements328

of carbon, nitrogen and chlorophyll content per cell for all four acclimation states make it329

possible to determine lower and upper ranges for both the nitrogen quota q and the chloro-330

phyll quota θ as well, as given in Table III. Moreover, measurements of the number and size331

of PSUs are also available at four acclimation states, assuming that the number of PSUs is332

proportional to the measured number of PSIs.333

Table III: Ranges of nitrogen and chlorophyll quotas from the experimental data by Falkowski and Owens
[11] at acclimation states L1, L2, L3 and L4.

Growth irradiance Ig Nitrogen quota Qmax Chlorophyll quota θ
[µE m−2 s−1] [gN g−1C ] [gchl gC

−1]
L1: 60 Qmax ∈ [0.250, 0.357] θ ∈ [0.0774, 0.0820]
L2: 120 Qmax ∈ [0.222, 0.323] θ ∈ [0.0654, 0.0682]
L3: 200 Qmax ∈ [0.213, 0.286] θ ∈ [0.0436, 0.0453]
L4: 400 Qmax ∈ [0.172, 0.208] θ ∈ [0.0355, 0.0373]
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Calibration of PI-Response Curves. Since experimental information is available for the ni-334

trogen quota q in all acclimation states, variations of the term (1−Q0/Qmax) in (20) can be335

accounted for with this data set—we consider a value of Q0 = 0.05 gN g−1C for the minimal336

nitrogen quota throughout [16, 2]. Like previously, we use a nonlinear regression approach337

based on least-square minimization to estimate the values of parameters ᾱ, β and κ, and we338

define extra variables for the nitrogen and chlorophyll quotas in the regression problem with339

bounds as defined in Table III. As far as the Han model parameters are concerned, we use340

the default values of τ and kr in Table I. On the other hand, the default value for kd is not341

deemed suitable as photoinhibition effects are not observed on the available PI-curve data,342

so kd is considered an extra variable in the regression problem with bounds [0, 10−7] initially.343

More data at higher light irrandiance would be needed for a better calibration.344

Table IV: Parameter estimates in the photosynthesis rate (20) for D. tertiolecta.

Param. Value Nitrogen quota Chlorophyll quota

ᾱ 5.50× 10−2 gC g−1chl µE
−1 m2 Q60

max = 0.250 gN g−1C θ60 = 0.082 gchl g−1C

β 5.48× 101 µE−1 m2 g
1/κ
chl g

−1/κ
C Q120

max = 0.322 gN g−1C θ120 = 0.065 gchl g−1C

κ 1.54× 100 – Q200
max = 0.266 gN g−1C θ200 = 0.045 gchl g−1C

kd 1.27× 10−8 – Q400
max = 0.208 gN g−1C θ400 = 0.036 gchl g−1C

The solver BARON [33] in the GAMS modeling environment is again used to guarantee glob-345

ally optimal parameter estimates. These estimates are reported in Table IV, and the fitted346

PI-response curves (20) are plotted against the available experimental data in Fig. 4 in gray347

solid lines. The predicted responses are generally in good agreement with the experimental348

data, thereby confirming the ability of the model to capture the photosynthetic activity of349

D. tertiolecta.350

For sake of comparison, we also plot in gray dotted lines on Fig. 4 the fitted PI responses351

without accounting for variations of the term (1− Q0

Qmax
) in (20); that is, the parameter α is352

estimated in lieu of ᾱ. These fits, although slightly degraded, remain accurate. Moreover,353

the corresponding parameter estimates, β ≈ 32.4, κ ≈ 1.4, and α ≈ 0.042, are in good354

agreement with the values in Table IV as well as with the confidence analysis that follows.355
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Figure 4: PI-response curves for D. tertiolecta based on the data by Falkowski and Owens [11]. The cyan,
magenta, red, and blue points correspond to acclimation at L1, L2, L3 and L4, respectively. The predicted PI
responses are depicted in gray lines, with and without accounting for variations of the term (1−Q0/Qmax)
in solid lines and dotted lines, respectively.

This shows that the PI-response model (20) is robust towards uncertainty in the nitrogen356

maximal quota Qmax.357

As previously with S. costatum, we assess the confidence of the estimates obtained for358

the acclimation parameters ᾱ, β and κ in Table IV. We consider variations of ±5% around359

the available photosynthesis rate measurements and we compute the set of all possible values360

for ᾱ, β and κ that are consistent with these measurement-error ranges.361

The results obtained for the data set by Falkowski and Owens [11] are shown in Fig. 5.362

Projections of the confidence region onto the (β, κ), (β, ᾱ) and (κ, ᾱ) subspaces provide363

parameter confidence ranges as β ∈ [32, 65], κ ∈ [1.35, 1.6] and ᾱ ∈ [0.052, 0.058]. These364

projections also reveal the existence of a strong correlation between the parameters β and κ,365

which is likely due to the absence of photoinhibition effects in this data set. In contrast, the366

correlations of β or κ with ᾱ appear to be rather small. The envelopes of all four PI-response367

curves obtained for parameter values in the confidence region are shown on the bottom-right368

plot of Fig. 2, confirming a good agreement with the experimental data.369
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Figure 5: Confidence region of the parameter estimates ᾱ, β and κ with ±5% deviations and corresponding
envelopes of PI curves for D. tertiolecta.

Calibration of Density and Size Acclimation Laws. Since experimental information is avail-370

able for both the density and size of PSUs at all four acclimation states, values of the371

acclimation parameters σ0 and κ in the power laws (17)-(18) can be estimated for this data372

set too. We apply the same linear regression approach and confidence analysis as for S.373

costatum in Sect. 4.1. The estimates for the parameters σ0 and κ in Table II are obtained374

by using the estimates for β, κ and α in Table IV. Then, confidence in these estimates is375

assessed by computing the set of all values for σ0 and κ that are consistent with the available376

measurement of density and size of PSU (within variations of ±5%), while simultaneously377

accounting for the uncertainty in the values of β, κ and α (Fig. 5).378

The resulting confidence region is shown on the left plot in Fig. 6, and the set of corre-379
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sponding model fits for the experimental data on the right plot. Here, parameter confidence380

ranges are obtained as σ0 ∈ [0,∞) and γ ∈ (−∞,−3.5]. Clearly, the parameter σ0 is not381

identifiable for this data, which is due to the fact that the size of PSU remains about constant382

at various acclimation states, and the range for γ is unbounded from below. Nonetheless, the383

upper bound for γ still allows to confidently conclude that this parameter is indeed negative384

for D. tertiolecta; see Sect. 5 for further discussion.385

Table V: Parameter estimates in the density and size acclimation laws (17)-(18) for D. tertiolecta.

Parameter Value

σ0 2.60× 10−11 [µE−1 m2 g−γchl PSUγ ]
γ −4.64× 100 [–]

Figure 6: Confidence region of the parameter estimates γ and σ0 for the measurement data ranges of PSU
size and number (left plot) and corresponding fit envelopes (right plots) for D. tertiolecta.

Calibration of Nitrogen-Quota-to-Chlorophyll-Quota Relationship. Since experimental infor-

mation is available for both the nitrogen quota q and the chlorophyll quota θ in all four

acclimation states, values of the parameters ψ̄ and kI in the nitrogen-quota-to-chlorophyll-

quota relationship (5)-(6) can be estimated from this data set as well. We apply a similar

linear regression approach and confidence analysis as for the density and size acclimation
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law, noting that the relationships (5)-(6) can be rewritten in the form:

ψ̄
q

θ
− 1

kI
Ig = 1 .

thus giving estimates for ψ̄ and 1
kI

, as reported in Table VI. For consistency with the previous386

PI-curve calibration, we use the estimated values of nitrogen and chlorophyll quotas in387

Table III to carry out the estimation. The nitrogen-quota-to-chlorophyll-quota predictions388

(black points) are plotted against the available experimental data (red circles) in Fig. 7;389

the gray dotted line on this plot is merely an interpolation between the predictions, since390

nitrogen or chlorophyll quotas are not available at intermediate irradiances. Despite some391

discrepancies at higher light irradiances, these results confirm the ability of the acclimation392

model (5)-(6) to capture the general trend of the data.393

Table VI: Parameter estimates in the nitrogen-quota-to-chlorophyll-quota relationship (5)-(6) for D. terti-
olecta.

Parameter Value

ψ̄ 0.31 gchl g−1N

kI 440 µE m−2 s−1

Finally, confidence in the foregoing parameter estimates is assessed by computing the set394

of all values for ψ̄ and kI that are consistent with the available measurement ranges of the395

nitrogen quota q and of the chlorophyll quota θ in all four acclimation states. The resulting396

confidence region is shown on the left plot in Fig. 8, providing parameter confidence ranges397

as ψ̄ ∈ [0.2, 0.35] and kI ∈ [400,∞). The bounds on ψ̄, although wide, confirm the order398

of magnitude for this parameter. On the other hand, kI can take on arbitrary large values,399

a result which is best understood from the upper-right plot in Fig. 8, where a horizontal400

line can indeed be seen to provide a good fit of the data point due to the large uncertainty401

in the nitrogen-quota measurements. This uncertainty is also reflected in the rather loose402

model-prediction envelopes on the lower-right plot.403
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Figure 7: Relation between chlorophyll quota and growth irradiance for D. tertiolecta. The red circles corre-
spond to measurements by Falkowski and Owens [11] at acclimation states L1, L2, L3 and L4, respectively.
The black points are computed from the calibrated nitrogen-quota-to-chlorophyll-quota relationship (5)-(6),
interpolated by the gray dotted line.

5. Discussion404

5.1. Model Extensions and Simplifications405

The proposed model in Sect. 3 assumes that only the effective cross-section σ in the Han406

model is affected by the photoacclimation processes. However, other parameters are likely407

to vary in response to a change in θ. In particular, there is strong experimental evidence408

supporting a variation of the parameter τ with the growth irradiance [26, 31]. A more409

complex model encompassing adaptation of this parameter at the slow time-scale could be410

considered, for instance by making τ a function of θ. As well as increasing complexity,411

this extension would nonetheless introduce extra parameters, while the data available for412

calibration are still scarce. Closer inspection of the model reveals that σ and τ always413

appear together in (12), in the product terms στ and στ 2 (the latter being more important414

for describing photoinhibition). It is therefore likely that our modeling of σ with respect to415

τ indirectly accounts for the variation of τ , and that the estimated parameter is effectively416

στ . This hypothesis could however reach its limit in case of strong photoinhibition, as the417

term στ 2 may become the dominant one.418

It is also important to note that photoacclimation acts at different levels in the proposed419
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Figure 8: Confidence region of the parameter estimates ψ̄ and kI for the measurement data ranges of
nitrogen and chlorophyll quotas given in Table III (left plot) and corresponding fit envelopes (right plots)
for D. tertiolecta.

model. Direct effect of photoacclimation on growth is via the light-dependent term φ in420

(2), multiplying Droop’s classical growth rate. In doing so, we preserve the structure of421

the Droop model and our model inherits many of its properties. However, both terms φ422

and (1 − Q0/q) in (2) are increasing functions of the nitrogen quota. It is therefore likely423

that a simpler model, whereby the term (1 − Q0/q) is replaced by a constant, may also424

be capable of accurate predictions. Such a model would in fact be close to the model in425

[13], which provides a rather simple description of photosynthesis. It is the authors’ opinion426

however that a more structured model as the one in Sect. 3 is preferable given the amount of427

mathematical analysis that has been devoted to the Droop model over the past few decades.428

5.2. Accurate Description of Acclimation Strategies and Parameters429

The fits obtained by estimating the parameters β, κ and ᾱ (or α) in the chlorophyll-430

specific photosynthesis rate (20) are in good agreement with the two data sets by Anning431

et al. [1] (Fig. 1) and Falkowski and Owens [11] (Fig. 4). Moreover, the resulting parameter432

estimates are found to be rather reliable in view of the confidence regions (Figs. 2 and 5),433

despite the presence of a significant correlation between the acclimation parameters β and434

κ. For both data sets, information relative to the density and size of PSUs is also available,435

which allows estimation of the parameters γ and σ0 as well. Here, the confidence analysis436

(Figs. 3 and 6) has revealed that σ0 may turn out to be unidentifiable when the density of437
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PSU is mainly unaffected by the chlorophyll quota, yet the range of γ can be more reliably438

estimated. This provides a means of cross-checking the main acclimation mechanism at play,439

namely the n-strategy versus the s-strategy:440

• For S. costatum [1], the estimated value and confidence range of κ suggest that the441

effective cross-section σ is an increasing function of θ per (16), although the rate of442

increase σ′ is slowing down with θ (concave shape); σ is therefore also a decreasing443

function of the acclimation light Ig. Because of the low small, positive γ value, the444

average size of PSU is fast increasing with θ, while the density of PSU is fast decreas-445

ing. This behavior can thus be interpreted as a mixed n-s acclimation strategy, with446

predominance of the s-type acclimation, in agreement with Falkowski and Owens [11].447

Also worth noting is the fact that the effective cross-section decreases much less rapidly448

with the acclimation light than the average PSU size, suggesting a reduced packaging449

effect, possibly due to the relatively small size of this species [24].450

• For D. tertiolecta [11], the estimated value and confidence range of κ suggest that σ is451

increasing with θ, but the rate of increase σ′ is itself increasing (convex). The average452

size of PSU remains about constant with θ, while the density of PSU is fast increasing453

with θ—or, equivalently, fast decreasing with the acclimation light Ig. According454

to this analysis D. tertiolecta would preferentially follow the n-strategy, which is in455

agreement with [11]. The fact that the effective cross-section is fast decreasing with456

the acclimation light, while the average size of PSU is about constant, suggests a457

strategy combining packaging effect and synthesis of accessory pigments in order to458

protect the cells from high irradiance [30].459

In sum, the model represents these two different behaviors, illustrating well its potential to460

distinguish between competing acclimation strategies for their light harvesting capacity at461

various irradiance levels. The fundamental differences between such strategies can in fact462

be related to the ecological niches occupied by both species [11]: D. tertiolecta is primarily463

found in shallow waters at low latitudes, and must therefore deal with high light. S. costatum464

lives in deeper, cooler waters and has to deal with low light intensity.465
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Regarding the photoacclimation kinetics, the fits obtained by estimating the parameters ψ̄466

and kI in the nitrogen-quota-to-chlorophyll-quota relationship (5)-(6) show a good agreement467

with the data sets by Falkowski and Owens [11] (Fig. 7). It is worth mentioning here that the468

estimated values of kI and ψ̄ (Table IV) are consistent with those reported in previous work469

[e.g., 2]. Nonetheless, a more careful confidence analysis (Fig. 8) reveals that the nitrogen-470

quota measurements carry too much uncertainty to determine reliable estimates, especially471

for the parameter kI whose confidence range happens to be unbounded. These calibration472

results, although promising, clearly delineate the need for more accurate and richer data sets473

in order to fully validate the proposed model.474

5.3. Can the Dynamic Model Predict the Data of Neidhardt et al. [25]?475

In this subsection, we consider another set of experimental data from Neidhardt et al.476

[25] for the microalgae Dunaliella salina. They comprise two acclimation states at different477

growth irradiances of 50 µE m−2 s−1 (LL) and 2000−2500 µE m−2 s−1 (HL). Estimation of478

primary production is via the O2 production rate by exposing the pre-acclimated microalgae479

to a sequence of increasing light irradiances between 4.7 and 4900 µE m−2 s−1, during 150 s480

at each irradiance level. Moreover, neither the nitrogen quotas nor the chlorophyll quotas481

are reported.482

As seen from Fig. 9, the initial slopes of the PI-response curves for cultures pre-acclimated483

at LL and HL differ greatly, which is in apparent contradiction with the constant initial slope484

assumption discussed in Sect. 3.2. Also reported on this figure (solid lines) are the results485

of a preliminary calibration showing that such a variation in initial slope can nonetheless486

be predicted accurately by the proposed model. More specifically, we simulated the experi-487

mental protocol in [25], to more accurately account for the actual repair dynamics. In this488

context, it is not assumed that a quasi steady state is reached for C. The calibration pro-489

cedure was carried out on this basis. It is important to do so here, because each stage of490

the PI-response protocol (150 s) may be too short for the dynamics of PSU inhibition to491

fully equilibrate, especially for a larger chlorophyll quota (LL pre-acclimated state). The492

initial slope expression is given by (10), with A = 1 − C. When microalgae are acclimated493
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at a high growth irradiance, A is smaller than one, even at very low light intensities, since494

a fraction of C is still not fully repaired. The lower slope is thus an index of the fraction of495

damaged PSU. The simulations on Fig. 9 show that, respecting the exact experimental pro-496

tocol, this behavior can be reproduced by the model. These results illustrate the capability497

of the proposed model to describe complex couplings between photoinhibition kinetics and498

photoacclimation.499

Figure 9: Dependency between growth rate and acclimation for D. salina [25]: blue crosses: experimental
data for LL acclimation; blue curve: model simulations for LL acclimation; red crosses: experimental data
for HL acclimation; red curve: model simulation for HL acclimation.

6. Conclusions and Future Directions500

The dynamic model presented in this paper couples photosynthetic processes that act501

on different time scales. Photosynthetic production and inhibition act on fast time scales of502

seconds to minutes, while the dynamics of intracellular nitrogen and chlorophyll contents are503

bound to slow time scales of hours or days. Our model builds upon the well-accepted Droop504

model describing nitrogen utilization and microalgae growth, together with the Han model505

describing photoproduction and photoinhibition in terms of PSU states, thereby inheriting506

their respective properties. The main novelty lies in the use of the chlorophyll quota to507

relate both the acclimation and growth processes with the states of the PSUs. Combined508
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with previous (validated) models describing the dynamics of the PSUs (Han model), nitrogen509

content (Droop model), and chlorophyll content (Geider et al. [15], Bernard [2]), our model510

is the first of its kind to link photoinhibition, photoacclimation and nutrient-limited growth511

all together.512

Preliminary calibrations and confidence analyses based on PI response data from the513

literature give encouraging results. By making the link among different PI curves, while514

preserving a simple structure, the proposed model can serve as a tool for hypothesis testing.515

Particularly insightful in this context is the ability to distinguish between the s-strategy516

and the n-strategy of PSU acclimation, which sheds light on the mechanisms that underly517

photoacclimation in various microalgae species. In order to further discriminate between the518

n-strategy and s-strategy, more experimental data would be needed nonetheless, especially519

data covering a wider range of acclimation states and other species. Measuring a larger520

set of physiological variables, such as the effective cross-section [20], would also be helpful.521

Another valuable insight from the proposed model has been that the experimental protocols522

used for producing PI response curves may not allow enough time at each irradiance level for523

the photoinhibition dynamics to fully develop. In practice, this may lead to overestimating524

the actual rate of photosynthesis and could explain the variations in initial slopes that are525

observed between PI response curves at different acclimation states in some experimental526

studies. Finally, a mathematical analysis of the proposed model could provide valuable527

insight into the inherent trade-offs and eventually help to identify strategies for enhancing528

microalgae productivity in large-scale industrial systems.529
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Table VII: List of symbols and acronyms.

Symbol Description Units
s inorganic nitrogen concentration gN m−3

sin inorganic nitrogen inlet concentration gN m−3

x biomass concentration gC m−3

c chlorophyll-a concentration gchl m−3

q carbon-specific nitrogen quota gN gC
−1

Q0 minimal carbon-specific nitrogen quota gN gC
−1

Ql nitrogen uptake limit of carbon-specific nitrogen quota gN gC
−1

Qmax maximal carbon-specific nitrogen quota gN gC
−1

ψ nitrogen-specific chlorophyll quota gchl gN
−1

ψ̄ maximal nitrogen-specific chlorophyll quota gchl gN
−1

θ carbon-specific chlorophyll quota gchl gC
−1

D dilution rate s−1

µ biomass growth rate s−1

µ̄ biomass growth rate under nutrient-replete conditions s−1

µchl, µ
PI
chl chlorophyll-specific photosynthesis rate gC gchl

−1 s−1

µPI?
chl optimal chlorophyll-specific photosynthesis rate gC gchl

−1 s−1

R biomass respiration rate s−1

ρ inorganic nitrogen uptake rate gN gC
−1 s−1

ρ̄ inorganic nitrogen maximal uptake rate gN gC
−1 s−1

ks half-saturation constant for inorganic nitrogen uptake rate gN m−3

φ light-dependent growth term −
kI saturation parameter of the nitrogen-specific chlorophyll-a quota µE m−2 s−1

Ig growth irradiance µE m−2 s−1

I instantaneous light intensity µE m−2 s−1

I? optimal acclimation irradiance µE m−2 s−1

δ photoacclimation time constant −
A fraction of photosynthetic units in open state −
A∞ steady-state fraction of photosynthetic units in open state −
B fraction of photosynthetic units in closed state −
C fraction of photosynthetic units in inhibited state −
σ effective cross-section of a photosynthetic unit m2µE−1

τ turnover time of a photosynthetic unit s
kd damage constant of a photosynthetic unit −
kr repair constant of a photosynthetic unit s−1

K ratio of damage to repair constants s
α, ᾱ initial slope of the photosynthesis-irradiance response curve gC g−1chl µE

−1 m2

Γ size of a photosynthetic unit gchl PSU−1

N number of photosynthetic units PSU gC
−1

γ exponent of photosynthetic unit size equation −
σ0 pre-exponential factor of photosynthetic unit size equation µE−1 m2 g−γchl PSUγ

κ exponent of effective cross-section equation −
β pre-exponential factor of effective cross-section equation µE−1 m2 g

1/κ
chl g

−1/κ
C

PSI photosystem I
PSU photosynthetic unit
PI photosynthesis-irradiance
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