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Abstract. The form factor bootstrap approach allows to construct the space of local fields in the massive
restricted sine-Gordon model. This space has to be isomorphic to that of the corresponding minimal model
of conformal field theory. We describe the subspaces which correspond to the Verma modules of primary
fields in terms of the commutative algebra of local integrals of motion and of a fermion (Neveu-Schwarz or
Ramond depending on the particular primary field). The description of null-vectors relies on the relation
between form factors and deformed hyper-elliptic integrals. The null-vectors correspond to the deformed
exact forms and to the deformed Riemann bilinear identity. In the operator language, the null-vectors are
created by the action of two operators Q (linear in the fermion) and C (quadratic in the fermion). We show
that by factorizing out the null-vectors one gets the space of operators with the correct character. In the
classical limit, using the operators Q and C we obtain a new, very compact, description of the KdV hierarchy.
We also discuss a beautiful relation with the method of Whitham.
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1 Introduction.

In this article we present a synthesis of the ideas of the papers [1] and [2]. In the first of these papers the
space of fields for the sine-Gordon model (SG) was described in terms of the form factors previously obtained
in the bootstrap approach [3]. This description is based on rather special properties of form factors for the
SG model. Namely, it uses the fact that the form factors were written in terms of deformed hyper-elliptic
differentials, allowing deformations of all the nice properties of the usual hyper-elliptic differentials: the notion
of deformed exact forms and of the deformed Riemann bilinear identity are available for them [4]. Using
these facts it has been shown in [1] that the same number of local operators can be constructed in the generic
case of the sine-Gordon model as at the free fermion point. The deformed exact forms and the deformed
Riemann bilinear identity are necessary in order to reduce the space of fields to the proper size because in
its original form factor description the space is too big. The description of [1] is basically independent of the
coupling constant, but for rational coupling constant there is a possibility to find additional degenerations.

The problem with the description of the space of fields obtained in [1] is due to the fact that it is difficult
to compare it with the description coming from Conformal Field Theory (CFT) or from the classical theory.
The latter two are closely connected because the Virasoro algebra can be considered as a quantization of the
second Poisson structure of KdV. It is even difficult to distinguish the descendents with respect to the two
chiral Virasoro algebras.

On the other hand in [2] the semi-classical limit of the form factor formulae has been understood. This
opens the possibility of identifying all the local operators by their classical analogues. Using this result we
decided to try to construct the module of the descendents of the primary fields with respect to the chiral
Virasoro algebra. The result of this study happened to be quite interesting.

Let us formulate more precisely the problems discussed in this paper. The sine-Gordon model is described
by the action:

S =
π

γ

∫ (
(∂µϕ)2 +m2(cos(2ϕ)− 1)

)
d2x

where γ is the coupling constant. In the quantum theory, the relevant coupling constant is: ξ = πγ
π−γ .

The sine-Gordon theory contains two subalgebras of local operators which, as operator algebras, are
generated by exp(iϕ) and exp(−iϕ) respectively. We shall consider one of them, say the one generated by
exp(iϕ). It is known that this subalgebra can be considered independently of the rest of the operators, as
the operator algebra of the theory with the modified energy-momentum tensor:

Tmodµν = TSGµν + iαεµ,µ′εν,ν′∂µ′∂ν′ϕ

where α = π
√

6
ξ(π+ξ) . This modification changes the trace of the energy-momentum tensor which is now:

Tmodµµ = m2 exp(2iϕ). This modified energy-momentum tensor corresponds to the restricted sine-Gordon
theory (RSG). For rational ξ

π , the RSG model describes the Φ[1,3]-perturbations of the minimal models of
CFT. In this paper we consider only the RSG model.

It is natural from a physical point of view of integrable perturbations [5] to expect that the space of
fields for the perturbed model is the same as for its conformal limit. The latter consists of the primary fields
and their descendents with respect to the two chiral Virasoro algebras. In this paper we shall consider the
descendents with respect to one of these algebras, the possibility of considering the descendents with respect
to the other one is explained in Subsection 2.2. The Verma module of the Virasoro algebra is generated by
the action of the generators L−k of the Virasoro algebra on the primary field. The irreducible representation
corresponding to a given primary field is obtained by factorizing out the null-vectors [6, 7].

On the other hand the very possibility of integrable deformations is due to the fact that there exists a
commutative subalgebra of the universal enveloping algebra of the Virasoro algebra: the algebra of local
integrals [5, 8, 9]. The local integrals I2k−1 have odd spins. Logically it must be possible to present the
Verma module as a result of the action of the local integrals of motion on a smaller module: the quotient over
the local integrals. The latter is isomorphic to the module created from the vacuum by the action of bosons
of even spins J2k. The important observation is that the form factor formulae allow us to give a description
of this space. Certainly, such a realization of the Verma module is very useful for integrable applications,
but there is a difficulty. It is not trivial to describe the null-vectors in this realization. This question, of the
description of the null-vectors, is the main problem solved in this paper.

Briefly, the result is as follows. It is useful to fermionize the bosons J2k by introducing Neveu-Schwarz
(ψ2k−1) or Ramond (ψ2k) fermions, depending on which primary field we consider. As in [1] the null-vectors
are due to the deformed exact forms and the deformed Riemann bilinear identity. In the fermionic language
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these null-vectors are created by the action of two operators: a linear one in the fermion (Q) and a quadratic
one (C). By calculating the characters we show that, after factorizing these null-vectors, we find exactly the
same number of descendents of a given primary field as in the corresponding irreducible representation of
the Virasoro algebra.

In Conformal Field Theory, the existence of null vectors provide differential equations for the correlation
functions. The null vectors built out of Q and C in our approach will also lead to a system of equations for
the correlation functions in the massive case. These equations will be similar to the hierarchies of equations
in classical integrable systems. In spite of the fact that such an infinite set of equations seems a priori
untractable, our hope is that, as in the classical case, large classes of solutions will be constructed. Hence
we hope that these equations will be really useful for the study of correlation functions in the massive case.

We also present a detailed analysis of the classical limit of our constructions. The description of the
null-vectors in terms of Q and C implies in the classical limit, a new and very compact description of the
KdV hierarchy. This new description is not the same as the description in terms of τ -functions [10], still
the technics we use are close to those of the Kyoto school. Finally, we discuss an amazing analogy between
the quantum theory and the results of the Whitham method for small perturbations around a given quasi-
periodic classical solution of KdV.

Let us make one general remark on the exposition. In this paper we restrict ourselves to the reflectionless
case of the sine-Gordon model. This is done only in order to simplify the reading of the paper. All our
conclusions are valid for a generic value of the coupling constant as well. For this reason, we chose to
present the final formulae in the situation of a generic coupling constant. This leads, from time to time, to
a contradictory situation. We hope that we shall be forgiven for this because if we wrote generic formulae
everywhere the understanding of the paper would have been much more difficult.

2 The space of fields.

2.1 The description of the space of fields in the A,B-variables.

At the reflectionless points (ξ = π
ν , ν = 1, 2, · · ·) the form factors of an arbitrary local operator O, in the

RSG-model, corresponding to a state with n-solitons and n-anti-solitons are given by

fO(β1, β2, · · · , β2n)−···−+···+ =

= cn
∏
i<j

ζ(βi − βj)
n∏
i=1

2n∏
j=n+1

1
sinh ν(βj − βi − πi)

exp(−1
2

(ν(n− 1)− n)
∑
j

βj)

× f̂O(β1, β2, · · · , β2n)−···−+···+ (1)

The function ζ(β), without poles in the strip 0 < Im β < 2π, satisfies ζ(−β) = S(β)ζ(β) and ζ(β − 2πi) =
ζ(−β): the S-matrix S(β) and the constant c are given in the Appendix A. The most essential part of the
form factor is given by

f̂O(β1, β2, · · · , β2n)−···−+···+ =

=
1

(2πi)n

∫
dA1 · · ·

∫
dAn

n∏
i=1

2n∏
j=1

ψ(Ai, Bj)
∏
i<j

(A2
i −A2

j ) L
(n)
O (A1, · · · , An|B1, · · · , B2n)

n∏
i=1

a−ii (2)

where Bj = eβj and

ψ(A,B) =
ν−1∏
j=1

(B −Aq−j), with q = eiπ/ν

As usual we define a = A2ν . Here and later if the range of integration is not specified the integral is taken
around 0. Notice that the operator dependence of the form factors (1) only enters in f̂O.

Different local operators O are defined by different functions L(n)
O (A1, · · · , An|B1, · · · , B2n). These func-

tions are symmetric polynomials of A1, · · · , An. For the primary operators Φ2k = exp(2kiϕ) and their
Virasoro descendants, LO are symmetric Laurent polynomials of B1, · · · , B2n. For the primary operators
Φ2k+1 = exp((2k + 1)iϕ), they are symmetric Laurent polynomials of B1, · · · , B2n multiplied by

∏
B

1
2
j .

Our definition of the fields Φm is related to the notations coming from CFT as follows: Φm corresponds
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to Φ[1,m+1]. The requirement of locality is guaranteed by the following simple recurrent relation for the
polynomials L(n)

O :

L
(n)
O (A1, · · · , An|B1, · · · , B2n)

∣∣∣
B2n=−B1, An=±B1

=

= −ε±L(n−1)
O (A1, · · · , An−1|B2, · · · , B2n−1) (3)

where ε = + or− respectively for the operators Φ2k and their descendents, or for Φ2k+1 and their descendents.
We explain this condition in Appendix A.

The explicit form of the polynomials LO for the primary operators is as follows

L
(n)
Φm

(A1, · · · , An|B1, · · · , B2n) =
n∏
i=1

Ami

2n∏
j=1

B
−m2
j

In this paper we shall consider the Virasoro descendents of the primary fields. We shall restrict ourselves
by considering only one chirality. Obviously, the locality relation (3) is not destroyed if we multiply the
polynomial L(n)

O (A|B) either by I2k−1(B) or by J2k(A|B) with

I2k−1(B) =
(

1 + q2k−1

1− q2k−1

)
s2k−1(B), k = 1, 2, · · · (4)

J2k(A|B) = s2k(A)− 1
2
s2k(B), k = 1, 2, · · · (5)

Here and later we shall use the following definition:

sk(x1, · · · , xm) =
m∑
j=1

xkj

The multiplication by I2k−1 corresponds to the application of the local integrals of motion. The normalization
factor 1+q2k−1

1−q2k−1 is introduced for further convenience. Since the boost operator acts by dilatation on A and
B, I2k−1 has spin (2k − 1) and J2k has spin 2k.

The crucial assumption which we make is that the space of local fields descendents of the operator Φm
is generated by the operators obtained from the generating function

Lm(t, y|A|B) = exp
(∑
k≥1

t2k−1I2k−1(B) + y2kJ2k(A|B)
)  n∏

i=1

Ami

2n∏
j=1

B
−m2
j

 (6)

This is our main starting point. This assumption follows from the classical meaning of the variables A,B [2].
We shall give classical arguments later, and the connection with CFT is explained in the next subsection.

2.2 The relation with CFT.

The RSG model coincides with the Φ[1,3]-perturbation of the minimal models of CFT. For the coupling
constants which we consider the minimal models in question are not unitary, but this fact is of no importance
for us. It is natural from a physical point of view, to conjecture that the number of local operators in the
perturbed model is same as in its conformal limit.

We first need to recall a few basic facts concerning the minimal conformal field theories. At the coupling
constant ξ, the conformal limit of the RSG models have central charge

c = 1− 6
π2

ξ(ξ + π)

The conformal limit of the fields Φm = eimϕ is identified with the operators Φ[1,m+1] in the minimal models.
They have conformal dimensions:

∆m =
m(mξ − 2π)

4(ξ + π)
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The reflectionless points, ξ = π
ν with ν = 1, 2, · · ·, correspond the non-unitary minimal models M(1,ν+1),

which are degenerate cases. At these points one has to identify Φm with Φ2ν−m.
The Virasoro Verma module corresponding to the primary field Φm is generated by the vectors

L−k1L−k2 · · ·L−kNΦm

At ξ = π
ν their structure is the same as for generic value of ξ. This means that for m integer, the Verma

module possesses only one submodule. The so-called basic null-vectors, which we shall denote by Γm, are
the generators of these submodules. They appear at level m+ 1. The first few are given by:

Γ0 = L−1Φ0,

Γ1 = (L−2 + κL2
−1)Φ1, κ = −1− π

ξ

Γ3 = (L−3 + κ1L−1L−2 + κ2L
3
−1)Φ2, κ1 = −2

π + ξ

π + 3ξ
, κ2 =

(π + ξ)2

2ξ(π + 3ξ)
etc · · ·

Other null-vectors, whose set form the submodule, are created from the basic ones as follows

L−k1L−k2 · · ·L−kN Γm

As a consequence, the character of the irreducible Virasoro representation with highest weight Φm is:

χm(p) =
1− pm+1∏
j≥1(1− pj)

There exists an alternative description of these modules which is more appropriate for our purposes.
Indeed, as is well known the integrability of the Φ[1,3]-perturbation is related to the existence of a certain
commutative subalgebra of the Virasoro universal enveloping algebra generated by elements I2k−1, polyno-
mial of degree k in Ln, such that [L0, I2k−1] = (2k − 1)I2k−1 and

[I2k−1, I2l−1] = 0, k, l = 1, 2, · · ·

The first few are given by:

I1 = L−1,

I3 = 2
∑
n≥0

L−n−2Ln−1,

etc · · ·

This is the subalgebra of the local integrals of motion. The meaning of these operators and of the I2k−1(B)
which we had above is the same, so we denote them by the same letters.

Of course acting only with this subalgebra on Φm does not generate the whole Verma module. But the
left quotient of the Verma module by the ideal generated by the integrals of motion produces a space whose
character is

∏
j≥0(1−p2j)−1. This space can be thought of as generated by some J2k with [L0, J2k] = 2kJ2k.

We expect that there is the following alternative way of generating the Virasoro module. Namely, in a
spirit similar to the Feigin-Fuchs construction [6], we expect that there exists an appropriate completion of
the subalgebra of the integrals of motion by elements J2k such that (i) the Verma module is isomorphic, as
a graded space, to the space generated by the vectors

exp(
∑
k≥1

t2k−1I2k−1) : exp(
∑
k≥1

y2kJ2k) : Φm (7)

where the double dots refer to an appropriate normal ordering, and (ii) that for certain normalization of I2k−1

and certain choice of J2k and their normal ordering the generating functions (6) and (7) provide different
realizations of the same object. We shall call the description given by (6) the A,B-representation of the
Virasoro module. The existence of this alternative description of the Virasoro module is very important for
integrable applications.
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The main problem for this I, J description arises from the non-trivial construction of the null-vectors.
This problem has two aspects. First one has to construct the null-vectors Γm in terms of I, J . Then one
also has to construct the submodule associated to it. This is not as trivial as in the standard representation
since, while acting on Γm with the I2k−1 still produces a null-vector, acting with the J2k does not necessarily
leads to a null-vector. We shall show that the whole null-vector submodule can be described in the A,B-
representation. The proof is based on rather delicate properties of the form-factor integrals, the main of
them being the deformed Riemann bilinear identity [4].

Let us discuss briefly the problem of the second chirality. In [2] we have explained that the formula (1)
has to be understood as a result of light-cone quantization in which x− is considered as space and x+ as
time. We must be able to consider the alternative possibility ( x+ - space, x− - time), and the results of
quantization must coincide. Where exactly the choice of hamiltonian picture manifests itself in our formulae?
Consider the formula (2). As it is explained in [2] the fact that L(n)

O is a polynomial in Ai corresponds to

the choice of x− as space direction while the multiplier
n∏
i=1

a−ii corresponds semi-classically to the choice

of trajectories under x+-flow. These are the two ingredients which change when the hamiltonian picture is
changed. Indeed, analyzing the results of [2], we find the following alternative description of the form factors.
The form factors are given by the formulae (1) with f̂O replaced by

ĥO(β1, β2, · · · , β2n)−···−+···+ =

=
1

(2πi)n

∫
dA1 · · ·

∫
dAn

n∏
i=1

2n∏
j=1

ψ(Ai, Bj)
∏
i<j

(A2
i −A2

j ) K
(n)
O (A1, · · · , An|B1, · · · , B2n)

n∏
i=1

a−i+1
i

2n∏
j=1

b
− 1

2
j

where bj = B2ν
j , K(n)

O is a polynomial in A−1
i and the replacement of

∏
a−ii by

∏
a−i+1
i

∏
b
− 1

2
j corresponds

to the change of x+-trajectories to x−-trajectories. In particular for the primary fields we have

K
(n)
Φm

(A1, · · · , An|B1, · · · , B2n) =
n∏
i=1

A−mi

2n∏
j=1

B
m
2
j

The L−k descendents are obtained by multiplying K(n)
Φm

by I−(2k−1)(B) and J−2k(A|B). The consistency of
the two pictures requires that for the primary fields they give the same result:

f̂Φm(β1, β2, · · · , β2n)−···−+···+ = ĥΦm(β1, β2, · · · , β2n)−···−+···+ (8)

This is a complicated identity which nevertheless can be proven. We do not present the proof here because it
goes beyond the scope of this paper. It should be said, however, that the proof is based on the same technics
as used below (deformed Riemann bilinear identity etc). Using the equivalence of the two representations of
the form factors we can consider the descendents with respect to L−k and also mixed L−k, L−k descendents.
A formula similar to (8) holds for any coupling constant. However, at the reflectionless points there is another
consequence of (8): it also shows that the operators Φm and Φ2ν−m are identified as it should be.

3 Null-vectors.

3.1 The null-polynomials.

Null-vectors correspond to operators with all the form factors vanishing. Consider the integral

1
(2πi)n

∫
dA1 · · ·

∫
dAn

n∏
i=1

2n∏
j=1

ψ(Ai, Bj)
∏
i<j

(A2
i −A2

j ) L
(n)
O (A1, · · · , An|B1, · · · , B2n)

n∏
i=1

a−ii (9)

Instead of L(n)
O , we shall often use the anti-symmetric polynomials M (n)

O :

M
(n)
O (A1, · · · , An|B1, · · · , B2n) =

∏
i<j

(A2
i −A2

j ) L
(n)
O (A1, · · · , An|B1, · · · , B2n)

The dependence on B1, · · · , B2n in the polynomials M (n)
O will often be omitted.
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There are several reasons why this integral can vanish. Some of them depend on a particular value of the
coupling constant or on a particular number of solitons. We should not consider these occasional situations.
There are three general reasons for the vanishing of the integral, let us present them.

1. Residue. The integral (9) vanishes if vanishes the residue with respect to An at the point An = ∞
of the expression

2n∏
j=1

ψ(An, Bj)a−nn M
(n)
O (A1, · · · , An)

Of course the distinction of the variable An is of no importance because M (n)
O (A1, · · · , An) is anti-symmetric.

2. ”Exact forms.” The integral (9) vanishes if M (n)
O (A1, · · · , An) happens to be an ”exact form”.

Namely, if it can be written as:

M
(n)
O (A1, · · · , An) =

∑
k

(−1)kM(A1, · · · , Âk, · · · , An) (Q(Ak)P (Ak)− qQ(qAk)P (−Ak)) , (10)

with

P (A) =
2n∏
j=1

(Bj +A)

for some anti-symmetric polynomial M(A1, · · · , An−1). Here and later Âk means that Ak is omitted. This is
a direct consequence of the functional equation satisfied by ψ(A,B) (See eq.(65) in Appendix B). For Q(A)
one can take in principle any Laurent polynomial, but since we want M (n)

O to be a polynomial the degree of
Q(A) has to be greater or equal −1.

3. Deformed Riemann bilinear relation. The integral (9) vanishes if

M
(n)
O (A1, · · · , An) =

∑
i<j

(−1)i+jM(A1, · · · , Âi, · · · , Âj , · · ·An)C(Ai, Aj)

where M(A1, · · · , An−2) is an anti-symmetric polynomial of n− 2 variables, and C(A1, A2) is given by

C(A1, A2) =
1

A1A2

{
A1 −A2

A1 +A2
(P (A1)P (A2)− P (−A1)P (−A2)) + (P (−A1)P (A2)− P (A1)P (−A2))

}
(11)

This property needs some comments. For the case of generic coupling constant its proof is rather complicated.
It is a consequence of the so called deformed Riemann bilinear identity [4]. The name is due to the fact
that in the limit ξ → ∞ the deformed Riemann bilinear identity happens to be the same as the Riemann
bilinear identity for hyper-elliptic integrals. The formula for C(A1, A2) given in [11] differs from (11) by
simple ”exact forms”. Notice that the formula for C(A1, A2) does not depend on the coupling constant. For
the reflectionless case a very simple proof is available which is given in Appendix B.

In order to apply these restrictions to the description of the null-vectors we have to make some prepa-
rations. The expression for C(A1, A2) given above is economic in a sense that, as a polynomial of A1, A2 it
has degree 2n − 1, but it is not appropriate for our goals because it mixes odd and even degrees of A1, A2

while the descendents of primary fields contain only odd or only even polynomials. So, by adding an ”exact
forms” we want to replace C(A1, A2) by equivalent expressions of higher degrees which contain only odd or
only even degrees.

Proposition 1. The following equivalent forms of C(A1, A2) exist:

C(A1, A2) ' Ce(A1, A2) ' Co(A1, A2), (12)

here and later ' means equivalence up to ”exact forms”. The formulae for Ce(A1, A2) and Co(A1, A2) are
as follows:

Ce(A1, A2) =
∫

|D2|>|D1|
|D1|>|A1|,|A2|

dD2dD1 τe

(
D1

D2

)(
P (D1)P (D2)

(D2
1 −A2

1)(D2
2 −A2

2)
− P (D1)P (D2)

(D2
2 −A2

1)(D2
1 −A2

2)

)
(13)

where

τe(x) =
∞∑
k=1

1− q2k−1

1 + q2k−1
x2k−1 −

∞∑
k=1

1 + q2k

1− q2k
x2k
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and

Co(A1, A2) = A1A2

∫
|D2|>|D1|

|D1|>|A1|,|A2|

dD2dD1τo

(
D1

D2

) (
P (D1)P (D2)

(D2
1 −A2

1)(D2
2 −A2

2)
− P (D1)P (D2)

(D2
2 −A2

1)(D2
1 −A2

2)

)

where

τo(x) =
∞∑
k=1

1− q2k

1 + q2k
x2k −

∞∑
k=1

1 + q2k−1

1− q2k−1
x2k−1

The proof of this proposition is given in Appendix B.
The functions τe(x) and τo(x) are not well defined when qr = 1 because certain denominators vanish.

However the formula (12) in which the LHS is independent of q implies that in the dangerous places we
always find ”exact forms” . So, for our applications these singularities are harmless.

3.2 The fermionization.

The descendents of the local operators are created by I2k−1 and J2k. This generates a bosonic Fock space. It
is very convenient to fermionize J2k. Let us introduce Neveu-Schwarz and Ramond fermions: ψ2k−1, ψ

∗
2k−1

and ψ2k, ψ
∗
2k. The commutation relations are as follows

ψlψ
∗
m + ψ∗mψl = δl,m

We prefer to follow the notations from [10] than those coming from CFT, the reader used to CFT language
has to replace ψ∗m by ψ∗−m.

The vacuum vectors for the spaces with different charges are defined as follows. In the Neveu-Schwarz
sector we have:

ψ2k−1|2m− 1〉 = 0, for k > m, ψ∗2k−1|2m− 1〉 = 0, for k ≤ m;
〈2m− 1|ψ2k−1 = 0, for k ≤ m, 〈2m− 1|ψ∗2k−1 = 0, for k > m

For the Ramond sector we have:

ψ2k|2m〉 = 0, for k > m, ψ∗2k|2m〉 = 0, for k ≤ m;
〈2m|ψ2k = 0, for k ≤ m 〈2m|ψ∗2k = 0, for k > m

We shall never mix the Neveu-Schwarz and Ramond sectors. The spaces spanned by the right action of an
equal number of ψ’s and ψ∗’s on the vector 〈p| will be called H∗p . The right action of ψ sends H∗p to H∗p+2.
It is useful to think of the vector 〈p| as a semi-infinite product

〈p| = · · ·ψp−4ψp−2ψp

Let us introduce generating functions for the fermions. The operators ψ(A), ψ∗(A) are defined for the
Neveu-Schwarz and the Ramond sectors respectively as follows

ψ(A) =
∞∑

k=−∞
A−2k+1ψ2k−1, ψ∗(A) =

∞∑
k=−∞

A2k−1ψ∗2k−1;

ψ(A) =
∞∑

k=−∞
A−2kψ2k, ψ∗(A) =

∞∑
k=−∞

A2kψ∗2k

We shall use the decomposition of ψ(A), ψ∗(A) into the regular and singular parts (at zero):

ψ(A) = ψ(A)reg + ψ(A)sing, ψ∗(A) = ψ∗(A)reg + ψ∗(A)sing

where ψ(A)reg and ψ∗(A)reg contain all the terms with non-negative degrees of A.
Let us introduce the bosonic commuting operators h−2k for k ≥ 1:

h−2k =
∞∑

j=−∞
ψ2j−1ψ

∗
2k+2j−1 for Neveu− Schwarz sector,

h−2k =
∞∑

j=−∞
ψ2jψ

∗
2k+2j for Ramond sector,

8



They satisfy the commutation relations: [h−2k, h
∗
−2l] = −kδk,l. We also have the following commutation

relations between the fermions and the bosons:

ψ(A)h−2k = (h−2k −A−2k)ψ(A) (14)

The bosonic generating function Lm(t, y|A|B) for the descendents of the operators Φm can be rewritten
as:

Lm(t, y|A|B) = exp

∑
k≥1

t2k−1I2k−1(B)

 〈m− 1| exp
(∑
k≥1

y2kh
∗
−2k

)
L̂m(A|B)|m− 1〉 (15)

where

L̂m(A|B) = exp

−∑
k≥1

1
k
h−2kJ2k(A,B)

 ∏
i

Ami
∏
j

B
−m2
j

In other words, to have a particular descendent one has to take in the expression

exp

∑
k≥1

t2k−1I2k−1(B)

 L̂m(A|B)|m− 1〉

the coefficient in front of some monomial in t2k−1 and to calculate the matrix element with some vector from
the fermionic space H∗m−1.

We can replace this bosonic expression by a fermionic one. Recall that as a direct result of the boson-
fermion correspondence one has:

∏
i<j

(A2
i −A2

j ) exp

−∑
k≥1

1
k
h−2k

n∑
i=1

A2k
i

 |m− 1〉 = ψ∗(A1) · · ·ψ∗(An)|m− 2n− 1〉
n∏
i=1

A−m+2n−1
i

where the fermions are Neveu-Schwarz or Ramond ones depending on the parity of m. Using this fact the
formula (15) can be rewritten for any n as follows∏

i<j

(A2
i −A2

j ) L̂m(A|B)|m− 1〉 = g(B) ψ∗(A1) · · ·ψ∗(An)|m− 2n− 1〉
∏
i

A2n−1
i

∏
j

B
−m2
j

where

g(B) = exp

∑
k≥1

1
2k
h−2ks2k(B)

 (16)

The occurrence of this operator is similar to that of the spin field in the description [12] of CFT on hyper-
elliptic curves.

Let us now concentrate on the operator Φ0 = 1 and its descendents. It means that we are working with
the H∗−1 subspace of the Neveu-Schwarz sector. The polynomials corresponding to the operators in this
sector are even in Ai. Let us describe the null-vectors due to the restrictions 1, 2, 3, from the previous
subsection. To do that we shall need the results of the following three propositions.

Proposition 2. The set of polynomials of the form

M
(n)
O (A1, · · · , An) =

∑
i<j

(−1)i+jM(A1, · · · , Âi, · · · , Âj , · · ·An)Ce(Ai, Aj) (17)

coincides up to ”exact forms” with the set of the matrix elements:

〈Ψ−5|Ĉ ψ∗(A1) · · ·ψ∗(An)| − 2n− 1〉
∏

A2n−1
i , ∀ Ψ−5 ∈ H∗−5 (18)

9



where

Ĉ =
∫

|D2|>|D1|

dD2

∫
dD1P (D1)P (D2)D−2n−1

1 D−2n−1
2 τe

(
D1

D2

)
ψ(D1)ψ(D2)

Proof.
The vectors from the space H∗ can be written as

〈Ψ| = 〈N |ψk1 · · ·ψkp

where kp > · · · > k1 > N + 1. We shall call N the depth of 〈Ψ|. There are three possibilities for the matrix
element (18) to differ from zero:

1. The depth of 〈Ψ−5| is greater than −2n− 1
2. The vector 〈Ψ−5| is obtained from a vector 〈Ψ−1| whose depth is greater than −2n− 1 by application
of ψ∗−2p−1ψ

∗
−2q−1 with q > p ≥ n (i.e. there are two holes below −2n− 1).

3. The vector 〈Ψ−5| is obtained from a vector 〈Ψ−3| whose depth is greater than −2n− 1 by application
of ψ∗−2p−1 with p ≥ n (i.e. there is one hole below −2n− 1).

In the first case using the formula

〈−2n− 1|ψ(D)ψ∗(A)| − 2n− 1〉 =
(
D

A

)2n−1
D2

(D2 −A2)
, |D| > |A|

and (13) one finds

〈Ψ−5|Ĉ ψ∗(A1) · · ·ψ∗(An)| − 2n− 1〉
∏

A2n−1
i =

=
∑
i<j

(−1)i+jM(A1, · · · , Âi, · · · , Âj , · · ·An)Ce(Ai, Aj)

where
M(A1, · · · , An−2) = 〈Ψ−3|ψ∗(A1) · · ·ψ∗(An−2)| − 2n− 1〉

∏
A2n−1
i

In the second case it is necessary that in the expression 〈Ψ−1|ψ∗−2p−1ψ
∗
−2q−1 Ĉ the two holes below −2n− 1

are annihilated by Ĉ, the result is

〈Ψ−1|
∫

|D2|>|D1|

dD2

∫
dD1P (D1)P (D2)D−2n+2p

1 D−2n+2q
2 τe

(
D1

D2

)
= 0

because the integrand is a regular function of D1 for p ≥ n.
In the third case it is necessary that in the expression 〈Ψ−3|ψ∗−2p−1 Ĉ the hole below −2n−1 is annihilated

by Ĉ, the result is

〈Ψ−3|
∫

|D2|>|D1|

dD2

∫
dD1P (D1)P (D2)D−2n−1

1 D−2n+2p
2 τe

(
D1

D2

)
ψ(D1)

where the pairing of ψ(D1) and ψ∗−2p−1 is not considered because it produces zero for the same reason as
above. In the matrix element we shall have the polynomials

〈−2n− 1|
∫

|D2|>|D1|

dD2

∫
dD1P (D1)P (D2)D−2n−1

1 D−2n+2p
2 τe

(
D1

D2

)
ψ(D1)ψ∗(Aj)| − 2n− 1〉A2n−1

j =

=
∫

|D2|>|D1|

dD2

∫
dD1P (D1)P (D2)

1
D2

1 −A2
j

D−2n+2p
2 τe

(
D1

D2

)
≡ R2n+2p(Aj)

The polynomial R2n+2p(A) is an even polynomial of degree 2n+ 2p. Let us show that it is an ”exact form”.
From the calculations of Appendix B we have

R2n+2p(A) =
∫

|D2|>|D1|

dD2

∫
dD1P (D1)P (D2)

1
D2

1 −A2
D−2n+2p

2 τe

(
D1

D2

)
'
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' A
∫

|D2|>|D1|

dD2

∫
dD1P (D1)P (D2)

1
D2

1 −A2
D−2n+2p

2

(
1

D1 +D2

)
=

= A

∫
|D1|>|D2|

dD2

∫
dD1P (D1)P (D2)

1
D2

1 −A2
D−2n+2p

2

(
1

D1 +D2

)
= 0 (19)

where we have changed the integral over |D2| > |D1| by the integral over |D1| > |D2| because the residue at
D2 = −D1 gives the integral over D1 of an even function, such integral equals zero. The last integral in (19)
vanishes because the integrand is a regular function of D2 for p ≥ n. Let us emphasize that our construction
is self-consistent because for every n the polynomials of too high degree (greater than 4n − 2) are ”exact
forms”.

Thus we have non-trivial matrix elements only in the first case which obviously exhausts the polynomial
of the kind (17).

Consider now the restriction 2 of the previous subsection. It is easy to figure out that there is only one
uniform way to write for all n polynomials of the type (10) which are even in all variables Ai. Namely:

M
(n)
O (A1, · · · , An) =

∑
k

(−1)kM(A2
1, · · · , Â2

k, · · · , A
2
n) (P (Ak)− P (−Ak))A−1

k (20)

where M(A2
1, · · · , · · · , A2

n−1) is arbitrary anti-symmetric polynomial.
The following two simple propositions are given without proof.

Proposition 3. The set of polynomials (20) coincides with the set of matrix elements:

〈Ψ−3|Q̂ ψ∗(A1) · · ·ψ∗(An)| − 2n− 1〉
∏

A2n−1
i ∀Ψ−3 ∈ H∗−3

where

Q̂ =
∫
dDD−2n−1P (D)ψ(D)

Proposition 4. The set of polynomials M
(n)
O (A1, · · · , An) such that

resAn=∞
∏
j

ψ(An, Bj)a−nn M
(n)
O (A1, · · · , An) = 0

(we hope that the same letter ψ used for the function ψ(A,Bj) and for the fermion is not confusing) coincides
with the set of matrix elements:

〈Ψ1|Q̂†ψ∗(A1) · · ·ψ∗(An)| − 2n− 1〉
∏

A2n−1
i ∀Ψ1 ∈ H∗1

where

Q̂† = resA=∞
∏
j

ψ(A,Bj)a−n
∫

|D|>|A|

ψ∗(D)
1

D2 −A2
D2ndD

Let us apply these results to the description of null-vectors. We need to introduce the following notations:

X(D) =
∑
k≥1

1
2k − 1

D−2k+1s2k−1(B) =
∑
k≥1

D−2k+1 1
2k − 1

(
1− q2k−1

1 + q2k−1

)
I2k−1(B), (21)

Y (D) =
∑
k≥1

1
2k
D−2ks2k(B) (22)

Obviously

P (D) = D2neX(D)−Y (D) (23)

The null-vectors will be produced by acting with some operators C, Q and Q† on L̂0(A|B)| − 1〉. In view of
the bosonization formulae, these operators are obtained from Ĉ, Q̂ and Q̂† by conjugation with g(B):

C g(B) = g(B) Ĉ, Q g(B) = g(B) Q̂, Q† g(B) = g(B) Q̂†

The formulae for C and Q are given in the following two propositions:
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Proposition 2’. From the Proposition 2 we find that the null-vectors due to the deformed Riemann bilinear
identity are of the form:

exp(
∑
k≥1

t2k−1I2k−1(B)) 〈Ψ−5| C exp(−
∑
k≥1

1
k
h−2kJ2k(A,B))| − 1〉

where

C =
∫

|D2|>|D1|

dD2

D2

∫
dD1

D1
eX(D1)eX(D2)τe

(
D1

D2

)
ψ(D1)ψ(D2) (24)

Proposition 3’. From the Proposition 3 one gets the following set of null-vectors due to the ”exact forms”:

exp(
∑
k≥1

t2k−1I2k−1(B)) 〈Ψ−3|Q exp(−
∑
k≥1

1
k
h−2kJ2k(A,B))| − 1〉

where

Q =
∫
dD

D
eX(D)ψ(D) (25)

Notice a very important feature in these formulae: The operators Q and C are independent of n.
These propositions are direct consequences of the previous ones and of the following conjugation property

of the fermions:

ψ(D) g(B) = g(B) ψ(D) e−Y (D), ψ∗(D) g(B) = g(B) ψ∗(D) eY (D)

Before dealing with Q† let us discuss the operator C, Q in more details. It will be convenient to rewrite
them in terms of another set of fermions ψ̃ and ψ̃†. To understand the purpose of introducing a new basis
for the fermions consider the formula (24). In this formula the fermion ψ(D2) can be replaced by its regular
part ψ(D2)reg because other multipliers in the integrand contain only negative powers of D2. That is why
C can be rewritten in the form

C =
∫
dD

D
ψ̃(D)singψ̃(D)reg (26)

where the modified fermion ψ̃ is defined as follows

ψ̃(D)reg = ψ(D)reg, ψ̃(D)sing = Uψ (D),

with U the following operator

Uf (D) =

 ∫
|D|>|D1|

dD1

D1
eX(D1)eX(D)τe

(
D1

D

)
f(D1)


odd

where [· · ·]odd means that only odd degrees of the expression with respect to D are taken because only those
count in the integral (26). It is quite obvious that this transformation is triangular, namely

ψ̃2k−1 =
(

1− q2k−1

1 + q2k−1

)
ψ2k−1 + (terms with ψ2l−1, l < k), k ≥ 1

Altogether we can write ψ̃(D) = Ûψ (D) where Û is triangular.
Introduce the fermions ψ̃† satisfying canonical commutation relations with ψ̃:

ψ̃†(D) =
(
Û−1

)T
ψ∗ (D)

Since the operator Û is not unitary, we do not use ∗ but † for ψ̃. The triangularity of the operator Û
guaranties that the Fock space H∗ constructed in terms of ψ̃, ψ̃† coincides with the original one.

12



Thus, we can rewrite (26) as follows

C =
∞∑
j=1

ψ̃−2j+1ψ̃2j−1

The important property of this formula is that for given number of solitons n the summation can be taken
from 1 to n because the operators ψ̃2j−1 with j > n produce ”exact forms” when plugged into the matrix
elements (see the proof of Proposition 2).

Similarly, we can express the operator Q, defined in (25), in terms of ψ̃:

Q =
∫
dD

D
eX(D)ψ̃(D)

This equality is due to the fact that only the regular part of ψ(D) contributes into the integral which does
not change under the transformation to ψ̃(D).

Now we are ready to consider the operator Q†.

Proposition 4’. From Proposition 4 one gets the following set of null-vectors due the vanishing of the
residues:

exp(
∑
k≥1

t2k−1I2k−1(B)) 〈Ψ1|Q† exp(−
∑
k≥1

1
k
h−2kJ2k(A,B))| − 1〉

where

Q† =
∫
dD

D
eX(D)ψ̃†(D)

Proof.
Directly from Proposition 4 one gets the following formula for Q†:

Q† = resA=∞
∏
j

ψ(A,Bj)a−n
∫

|D|>|A|

dDD2ne−Y (D)ψ∗(D)
1

D2 −A2
(27)

This formula looks much simpler in terms of ψ̃†. By definition we have

ψ∗(D) = ÛT ψ̃† (D) =

 ∫
|D1|>|D|

dD1

D1
eX(D1)eX(D)τe

(
D

D1

)
ψ̃†(D1)


odd

+ ψ̃†(D)sing

The last term does not contribute to the residue because∫
|D|>|A|

dDD2ne−Y (D) 1
D2 −A2

ψ̃†(D)sing = O(A2n−2)

and ∏
j

ψ(A,Bj)a−n = A−2n(1 +O(A−1)) (28)

Substituting the rest into (27) one has

Q† =
∫
dD1

D1
ψ̃†(D1)eX(D1)resA=∞

∏
j

ψ(A,Bj)a−n
∫

|D1|>|D|

dDP (D)
1

D2 −A2
τe

(
D

D1

)

Using the formulae from Appendix B one can show that∫
|D1|>|D|>|A|

dDP (D)
1

D2 −A2
τe

(
D

D1

)
' 1

2

(
P (A)
A+D1

+
P (A)
A−D1

)
+O(A−1) = A2n−1(1 +O(A−1))

13



Here the equality is up to ”exact form” in A; such ”exact form” never contribute to the residue. Now the
formula (28) gives

resA=∞
∏
j

ψ(A,Bj)a−n
∫

|D1|>|D|>|A|

dDP (D)
1

D2 −A2
τe

(
D

D1

)
= 1

which proves the proposition.

This alternative expression for Q† shows that it is independent of n, as Q and C are.
Notice that in the formulae for Q and Q† only the holomorphic parts of ψ̃(D) and ψ̃†(D) are relevant.

This leads to the important commutation relation:

[C,Q†] = Q (29)

Notice also that Q and Q† are nilpotent operators, Q2 = (Q†)2 = 0, and [C,Q] = 0.

3.3 Algebraic definition of the null-vectors.

Let us summarize our study of the null-vectors for the descendents of Φ0. It is quite convenient to present
the null-vectors as vectors from the dual space. In this section we shall write 〈Ψ| =

w

0 if the matrix element
of 〈Ψ| with the fermionic generating function of local fields vanishes under the integral (w means ”in a weak
sense”). We have found three types of null-vectors:

〈Ψ−5|C =
w

0, ∀ 〈Ψ−5| ∈ H∗−5, (i)

〈Ψ−3|Q =
w

0, ∀ 〈Ψ−3| ∈ H∗−3, (ii)

〈Ψ1|Q† =
w

0, ∀ 〈Ψ1| ∈ H∗1 , (iii)

where the operators C, Q†, Q are given respectively by

C =
∫
dD

D
ψ̃(D)regψ̃(D)sing, Q =

∫
dD

D
eX(D)ψ̃(D), Q† =

∫
dD

D
eX(D)ψ̃†(D)

Let us show that these three conditions for the null-vectors are not independent.
It is easy to show that the operator C identifies the spaces H∗−3 and H∗1 :

Ker(C|H∗−3→H
∗
1
) = 0, Im(C|H∗−3→H

∗
1
) = H∗1

Hence every 〈Ψ1| ∈ H∗1 can be presented as 〈Ψ−3|C for some 〈Ψ−3| ∈ H∗−3. Let us show that the null-vectors
(iii) are linear combinations of (i) and (ii). We have:

〈Ψ1|Q† = 〈Ψ−3|CQ† = 〈Ψ−3|Q+ 〈Ψ−3|Q†C

where we have used the commutation relation (29). Thus we have proven the following

Proposition 5. In the space of descendents of Φ0 = 1 which is H(I) ⊗ H∗2m (where H(I) is the space of
polynomials of {I2k−1}) the null-vectors coincide with the vectors

〈Ψ−5|C =
w

0, ∀ 〈Ψ−5| ∈ H∗−5, (i)

〈Ψ−3|Q =
w

0, ∀ 〈Ψ−3| ∈ H∗−3, (ii)

and their descendents with respect to I’s.

The consideration of the other operators Φ2m is based on the same formulae, but involves additional
complications. We do not want to go into details, and we only present the final result.

Proposition 6. For the operator Φ2m whose descendents are counted by the vectors from H(I) ⊗H∗2m−1

we have two types of independent null-vectors:

〈Ψ−5−2m|(C)m+1 =
w

0, ∀ 〈Ψ−5−2m| ∈ H∗−5−2m, (i)

〈Ψ−3−2m|(C)mQ =
w

0, ∀ 〈Ψ−3−2m| ∈ H∗−3−2m, (ii)
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and their descendents with respect to I’s.

For the operators Φ2m+1 one has the following picture. There is no uniform “exact form” which is an
odd polynomial, so, the analogue of the operator Q does not exist for Φ2m+1, and the null-vectors are either
due to the deformed Riemann bilinear identity or due to the vanishing of the residue. To construct the
null-vectors in terms of fermions one has to introduce first the operator C:

C =
∫

|D2|>|D1|

dD2

D2

∫
dD1

D1
eX(D1)eX(D2)τo

(
D1

D2

)
ψ(D1)ψ(D2)

where the fermions are from the Ramond sector. This operators can be rewritten in a form similar to (26):

C =
∫
dD

D
ψ̃(D)regψ̃(D)sing

The fermions ψ̃ are related to ψ by triangular transformation.
The consideration of the operator Φ1 is absolutely parallel to the consideration of Φ0. The null-vectors

are created either by the action of C (Riemann identity) or by the action of ψ̃†0 (residue). Notice that

[C, ψ̃†0] = 0

which guaranties the consistency. For higher operators Φ2m+1 there are additional problems which we would
not like to discuss here. The general result is given in the following

Proposition 7. The descendents of the operator Φ2m+1 are counted by the vectors from the space H(I)⊗
H∗2m. We have two types of null-vectors

〈Ψ−4−2m|(C)m+1 =
w

0, ∀ 〈Ψ−4−2m| ∈ H∗−4−2m, (i)

〈Ψ2−2m|(C)mψ̃†0 =
w

0, ∀ 〈Ψ2−2m| ∈ H∗2−2m, (ii)

and their descendents with respect to I’s

3.4 Examples of null-vectors and the characters.

Let us present the simplest examples of null-vectors for the operators Φ0, Φ1 and Φ2.
For the operator Φ0 the simplest null-vector is created by

〈−3|Q = s1(B)〈−1|

This null-vector is (
1− q
1 + q

)
I1Φ0

This null-vector is to be compared with
L−1Φ0

For the operator Φ1 the simplest null-vector is created by

〈2|ψ̃†0 = 〈−2|ψ̃2 =
(

1− q2

1 + q2

)(
〈−2|ψ2 −

1
2

(
1 + q

1− q

)2

s1(B)2〈0|

)

which gives the null-vector (
1− q2

1 + q2

)
(J2 −

1
2
I2
1 )Φ1

which has to be compared with
(L−2 + κL2

−1)Φ1

For the operator Φ2 the simplest null-vector is created by 〈−5|CQ. It yields

1
3

(
1− q3

1 + q3

)
(I3 − 3I1J2 +

1
2
I3
1 )Φ2
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which has to be compared with
(L−3 + κ1L−1L−2 + κ2L

3
−1)Φ2

Notice that the relative coefficients in our paramatrization of the null-vectors are independent of ξ. So, they
are exactly of the same form as the classical one. However, this is not always the case.

Let us show that generally the number of our null-vectors is the same as for the representations of the
Virasoro algebra. Recall that we consider the null-vectors which do not depend on the arithmetical properties
of ξ

π , so, there is one basic null-vector in every Verma module of Virasoro algebra. The character of the
irreducible module associated with Φm is

χm(p) = (1− pm+1)
1∏

j≥1(1− pj)
(30)

where we omitted the multiplier with the scaling dimension of the primary field. We can not control this
scaling dimension, the dimensions of the descendents are understood relatively to the dimension of the
primary field. The character (30) is obtained from the character of the Verma module by omitting the
module of descendents of the null-vector on the level m+ 1.

Let us consider the character of the module which we constructed in terms of I, J . The dimensions of
I2k−1 and J2k are naturally 2k− 1 and 2k. If we do not take into account the null-vectors, the characters of
all the modules associated with Φm are the same:

χ(p) =
1∏

j≥1(1− pj)

Let us take into account the null-vectors. They are described in terms of fermions. By consistency with the
dimensions of I2k−1 and J2k one finds that the dimensions of ψl and ψ†−l equal l.

Technically it is easier to start with Φ2m+1. The space of descendents is H(I)⊗H∗2m where H(I) is the
space of polynomials of {I2k−1}.

Proposition 8. The character of the space of descendents of Φ2m+1, modulo the null vectors, equals

χ2m+1(p) = (1− p2(m+1))
1∏

j≥1(1− pj)

Proof.
The null-vectors are defined in the Proposition 7. It is easy to eliminate the null-vectors (ii): we have to
consider the subspace H∗−2m, 0 in which the level ψ̃0 is always occupied. Consider the sequence

H∗−2m−4, 0 →C H∗−2m, 0 →C
m

H∗2m, 0

The operator Cm identifies the spaces H∗−2m, 0 and H∗2m, 0:

Ker(Cm|H∗−2m, 0→H
∗
2m, 0

) = 0, Im(Cm|H∗−2m, 0→H
∗
2m, 0

) = H∗2m, 0

and 〈−2m − 2|ψ̃†0Cm = 〈2m|. Hence we can count the descendents by vectors of the space H(I) ⊗H∗−2m, 0

with the null-vectors:

〈Ψ−4−2m|C =
w

0, ∀ 〈Ψ−4−2m| ∈ H∗−4−2m, 0,

Notice that the operator C is dimensionless and

Ker(C|H∗−4−2m, 0→H
∗
−2m, 0

) = 0

That is why for the character of the space of descendents without null-vectors we have:

χ2m+1(p) =
1∏

j≥1(1− p2j−1)
p−m(m−1)

(
χ

H∗−2m, 0
(p)− χ

H∗−2m−4, 0
(p)
)

(31)
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where the first multiplier comes from H(I) the multiplier p−m(m−1) is needed in order to cancel the dimension
of the vacuum vector in H∗−2m. Let us evaluate the expression in brackets:

χ
H∗−2m, 0

(p)− χ
H∗−2m−4, 0

(p) =

=
∫ ∏

j≥1

(1 + p2jx)(1 + p2jx−1)x−m
dx

x
−
∫ ∏

j≥1

(1 + p2jx)(1 + p2jx−1)x−m−2 dx

x
=

=
∫

(1 + x−1)
∏
j≥1

(1 + p2jx)(1 + p2jx−1)x−m
dx

x
−
∫

(1 + x−1)
∏
j≥1

(1 + p2jx)(1 + p2jx−1)x−m−1 dx

x
=

= (1− p2(m+1))
∫

(1 + x−1)
∏
j≥1

(1 + p2jx)(1 + p2jx−1)x−m
dx

x
=

= (1− p2(m+1))χ
H∗−2m

(p) = pm(m−1)(1− p2(m+1))
1∏

j≥1(1− p2j)

where we have changed the variable of integration x→ xp−2 in the second integral when passing from third
to forth line. Substituting this result into (31) we get the correct character:

χ2m+1(p) = (1− p2(m+1))
1∏

j≥1(1− pj)

Let us consider now the operators Φ2m. We parametrize the descendents of Φ2m by the vectors from
H(I)⊗H∗2m−1,

Proposition 9. The character of the space of descendents of Φ2m, modulo the null-vectors, equals

χ2m(p) = (1− p2m+1)
1∏

j≥1(1− pj)

Proof.
The null-vectors are defined in the Proposition 6. We have

H∗−2m−5 →C H∗−2m−1 →C
m

H∗2m−1

H∗−2m−3 →Q H∗−2m−1 →C
m

H∗2m−1

The operator Cm identifies H∗−2m−1 and H∗2m−1:

Ker(Cm|H∗−2m−1→H
∗
2m−1

) = 0, Im(Cm|H∗−2m−1→H
∗
2m−1

) = H∗2m−1

and 〈−2m − 1| Cm = 〈2m − 1|. Hence we can replace the space H(I) ⊗H∗2m−1 with these null-vectors by
H(I)⊗H∗−2m−1 with null-vectors

〈Ψ−5−2m|C =
w

0, ∀ 〈Ψ−5−2m| ∈ H∗−5−2m, (i)

〈Ψ−3−2m|Q =
w

0, ∀ 〈Ψ−3−2m| ∈ H∗−3−2m, (ii)

So, the character in question is

χ2m(p) =
1∏

j≥1(1− p2j−1)
p−m

2
(
χ

H∗−2m−1, 0
(p)− χ

H∗−2m−5,0
(p)
)

where H∗−2l−1, 0 = H∗−2l−1/H
∗
−2l−3Q. In order to calculate the character χ

H∗−2l−1, 0
(p) one has to take into

account that Q is a nilpotent operator, Q2 = 0 , with a trivial cohomology. Hence

Ker(Q|H∗−2j−3→H
∗
−2j−1

) = Im(Q|H∗−2j−5→H
∗
−2j−3

)

Summing up over this complex we obtain:

χ
H∗−2l−1, 0

(p) =
∫
|x|>1

∏
j≥1

(1 + p2j−1x)(1 + p2j−1x−1)x−l
x

x+ 1
dx

x

17



Hence

χ
H∗−2m−1, 0

(p)− χ
H∗−2m−5, 0

(p) =

=
∫
|x|>1

∏
j≥1

(1 + p2j−1x)(1 + p2j−1x−1)x−m
x

x+ 1
x2 − 1
x2

dx

x
=

=
∫ ∏

j≥1

(1 + p2j−1x)(1 + p2j−1x−1)x−m
dx

x
−
∫ ∏

j≥1

(1 + p2j−1x)(1 + p2j−1x−1)x−m−1 dx

x
=

= (1− p2m+1)χ
H∗−2m−1

(p) = pm
2
(1− p2m+1)

1∏
j≥1(1− p2j)

Thus the character is given by

χ2m(p) = (1− p2m+1)
1∏

j≥1(1− pj)
as it should be.

4 Classical case.

4.1 Local fields and null-vectors in the classical theory.

The classical limit of the light-cone component T−− of the energy-momentum tensor gives the KdV field
u(x−). When working with the multi-time formalism we shall identify x− with t1. Local fields in the KdV
theory, descendents of the identity operators, are simply polynomials in u(t) and its derivatives with respect
to t1:

O = O(u, u′, u′′, ...) (32)

We shall use both notations ∂1 and ′ for the derivatives with respect to x− = t1.
Instead of the variables u, u′, u′′, ..., it will be more convenient to replace the odd derivatives of u by the

higher time derivatives ∂2k−1u, according to the equations of motion

∂L

∂t2k−1
=

[(
L

2k−1
2

)
+
, L

]
= u(2k−1) + · · ·

Here
L = ∂2

1 − u
is the Lax operator of KdV. We have used the pseudo-differential operator formalism. We follow the book
[13].

The even derivatives of u(x) will be replaced by the densities S2k of the local integrals of motion,

S2k = res∂1L
2k−1

2 = − 1
22k−1

u(2k−2) + · · · ,

In particular on level 2 we have S2 = − 1
2u. For a reader who prefers the τ -function language S2k =

∂1∂2k−1 log τ .
From analogy with the conformal case we put forward the following main conjecture underlying the

classical picture:

Conjecture. We can write any local fields as

O(u, u′, u′′, ...) = FO,0(S2, S4, · · ·) +
∑
ν>1

∂νFO,ν(S2, S4, · · ·) (33)

where ν = (i1, i3, · · ·) is a multi index, ∂ν = ∂i11 ∂
i3
3 · · ·, |ν| = i1 + 3i3 + · · ·.

We have checked this conjecture up to very high levels. To see that this conjecture is a non trivial one,
let us compute the character of the space of local fields eq.(32). Attributing the degree 2 to u and 1 to ∂1,
we find that

χ1 =
∏
j>2

1
1− pj

= (1− p)
∏
j>1

1
1− pj

= 1 + p2 + p3 + 2p4 + 2p5 + · · ·
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On the other hand the character of the elements in the right hand side of eq.(33) is

χ2 =
∏
j>1

1
1− p2j−1

∏
j>1

1
1− p2j

=
∏
j>1

1
1− pj

= 1 + p+ 2p2 + 3p3 + 5p4 + 7p5 + · · ·

Hence χ1 < χ2, and this is precisely why null-vectors exist. Let us give some examples of null-vectors

level 1 : ∂1 · 1 = 0 (34)
level 2 : ∂2

1 · 1 = 0
level 3 : ∂3

1 · 1 = 0, ∂3 · 1 = 0
level 4 : ∂4

1 · 1 = 0, ∂1∂3 · 1 = 0, (∂2
1S2 − 4S4 + 6S2

2) · 1 = 0
level 5 : ∂5

1 · 1 = 0, ∂2
1∂3 · 1 = 0, ∂5 · 1 = 0,

∂1(∂2
1S2 − 4S4 + 6S2

2) · 1 = 0, (∂3S2 − ∂1S4) · 1 = 0

We have written all the null-vectors explicitly to show that their numbers exactly match the character
formulae. The non trivial null-vector at level 4 expresses S4 in terms of the original variable u: 4S4 =
− 1

2u
′′ + 3

2u
2. With this identification the non-trivial null-vector at level 5, ∂3S2 − ∂1S4, gives the KdV

equation itself

∂3u+
3
2
uu′ − 1

4
u′′′ = 0

More generally one can consider the descendents of the fields eimϕ where ϕ is related to u by the Miura
transformation

u = −ϕ′2 + iϕ′′

Here, the presence of i is a matter of convention. The reality problems have been discussed at length in [2].
For this consideration and for other purposes we need certain information about the Baker-Akhiezer

function. The Baker-Akhiezer function w(t, A) is a solution of the equation

Lw(t, A) = A2w(t, A) (35)

which admits an asymptotic expansion at A =∞ of the form

w(t, A) = eζ(t,A)(1 + 0(1/A)); ζ(t, A) =
∑
k≥1

t2k−1A
2k−1

In these formulae, higher times are considered as parameters. The second solution of equation (35), denoted
by w∗(t, A), has the asymptotics

w∗(t, A) = e−ζ(t,A)(1 + 0(1/A))

These definitions do not fix completely the Baker-Akhiezer functions since we can still multiply them by
constant asymptotic series of the form 1 +O(1/A). Since normalizations will be important to us, let us give
a more precise definition. We first introduce the dressing operator

L = Φ∂2
1Φ−1; Φ = 1 +

∑
i>1

Φi∂−i1

and we define

w(t, A) = Φeζ(t,A), w∗(t, A) = (Φ∗)−1e−ζ(t,A)

where Φ∗ = 1 +
∑
i>1(−∂1)iΦi is the formal adjoint of Φ.

Proposition 10. With the above definitions, one has
1) The wronskian W (A) = w(t, A)w∗(t, A)′ − w∗(t, A)w(t, A)′ takes the value

W (A) = 2A
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2) The generating function of the local densities S(A) = 1 +
∑
k>0 S2kA

−2k is related to the Baker-Akhiezer
function by

S(A) = w(t, A)w∗(t, A)

3) The function S(A) satisfies the Ricatti equation

2S(A)S(A)′′ − (S(A)′)2 − 4uS(A)2 − 4A2S(A)2 + 4A2 = 0 (36)

Proof.
Let us prove the wronskian identity. This amounts to showing that resA(W (A)Ai) = 2δi,−2. But we have

resA

(
W (A)Ai

)
= resA

{(
∂1Φ∂i1e

ζ(t,A)
)(

(Φ∗)−1e−ζ(t,A)
)
−
(

Φeζ(t,A)
)(
∂1(Φ∗)−1(−∂1)ie−ζ(t,A)

)}
We can transform the residue in A in a residue in ∂1 using the formula

resA

{(
Peζ(t,A)

)
·
(
Qe−ζ(t,A)

)}
= res∂1

(
PQ∗

)
Hence we find

resA

(
W (A)Ai

)
= res∂1

{
∂1Φ∂i1Φ−1 + Φ∂i1Φ−1∂1

}
= res∂1

{
∂1L

i
2 + L

i
2 ∂1

}
If i is even positive, the residue is zero because the L

i
2 is a purely differential operator. If i = −2 the residue

is obviously 2, and if i < −2 it is zero. If i is odd, then (L
i
2 )∗ = −L i

2 so that the operator ∂1L
i
2 + L

i
2 ∂1 is

formally self-adjoint and it cannot have a residue.
The proof of 2) is simple [13]

resA

(
A2k−1w(t, A)w∗(t, A)

)
= res∂1

(
Φ∂2k−1

1 Φ−1
)

= res∂1

(
L

2k−1
2

)
= S2k

The Ricatti equation follows immediately from 1),2) and eq.(35).

Let us return to the descendents of the primary fields. For the descendents of the fields eimϕ, our
conjecture states that

O(u, u′, u′′, ...)eimϕ =
∑
ν≥0

∂ν
(
FO,ν(S2, S4, · · ·)eimϕ

)
(37)

Let us consider for example eiϕ. For a true solution of the KdV equation, the Baker-Akhiezer function is
a true function on the spectral curve, and it can be analytically continued at A = 0. From the definition of
eiϕ we have Leiϕ = 0. Comparing with eq.(35), we see that eiϕ = w(t, A)|A=0. To check eq.(37), at least on
the first few levels, we need the time derivatives of eiϕ. They can be obtained as follows. The time evolution
of the Baker-Akhiezer function is well known.

∂w

∂t2k−1
=
(
L

2k−1
2

)
+
w

By analytical continuation at A = 0, we obtain the evolution equations for eiϕ.
Let us give some examples of these null vectors. We show below the first null vector associated to the

primary fields eimϕ.

m = 1 : (∂2
1 + 2S2)eiϕ = 0

m = 2 : (2∂3 + ∂3
1 + 6∂1S2)e2iϕ = 0

m = 3 : (8∂1∂3 + ∂4
1 + 12∂2

1S2 + 24S4)e3iϕ = 0
m = 4 : (24∂5∂1 + 20∂3∂

3
1 + ∂6

1 + 20∂4
1S2 + 40∂3∂1S2 + 120∂2

1S4)e4iϕ = 0

In these formulae, the derivatives act on everything on their right i.e. ∂1S2e
2iϕ = ∂1(S2e

2iϕ).
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4.2 Finite-zone and soliton solutions.

For the finite-zone solutions, the Baker-Akhiezer function is an analytical function on the spectral curve
which is an algebraic Riemann surface. Let us recall briefly the construction [14, 15].

We start with an hyperelliptic curve Γ of genus n described by the equation

Γ : Y 2 = XP(X), P(X) =
2n∏
j=1

(X −B2
j ), B2n > · · · > B2 > B1 > 0

For historical reasons we prefer to work with the parameter A such that X = A2. The surface is realized
as the A-plane with cuts on the real axis over the intervals ci = (B2i−1, B2i) and ci = (−B2i,−B2i−1),
i = 1, · · · , n, the upper (lower) bank of ci is identified with the upper (lower) bank of ci. The square root√
P(A2) is chosen so that

√
P(A2)→ A2n as A→∞. The canonical basis of cycles is chosen as follows: the

cycle ai starts from B2i−1 and goes in the upper half-plane to −B2i−1, bi is an anti-clockwise cycle around
the cut ci.

Let us consider in addition a divisor of order n on the surface Γ:

D = (P1, · · · , Pn)

With these data we construct the Baker-Akhiezer function which is the unique function with the following
analytical properties:

• It has an essential singularity at infinity: w(t, A) = eζ(t,A)(1 +O(1/A)).

• It has n simple poles outside infinity. The divisor of these poles is D.

Considering the quantity −∂2
1w + A2w, we see that it has the same analytical properties as w itself, apart

for the first normalization condition. Hence, because w is unique, there exists a function u(t) such that

−∂2
1w + u(t)w +A2w = 0 (38)

We recognize eq.(35). One can give various explicit constructions of the Baker-Akhiezer function. Let us
introduce the divisor Z(t) of the zeroes of the Baker-Akhiezer function. It is of degree n:

Z(t) = (A1(t), · · · , An(t))

The equations of motion for the divisor Z(t) read [15].

∂1Ai(t) =

√
P(A2

i (t))∏
j 6=i

(A2
i (t)−A2

j (t))
(39)

The normalization of the Baker-Akhiezer function corresponds to a particular choice of the divisor of its
poles D. Later we shall specify the divisor which corresponds to the normalization of the Baker-Akhiezer
function which was required in the previous subsection, for the moment we give a formula in which the
normalization is irrelevant. Consider two sets of times t and t(0), differing only by the value of t1. Then we
can write

w(t, A)
w(t(0), A)

=

√
Q(A2, t)
Q(A2, t(0))

exp

(∫ t1

t
(0)
1

A
√
P(A2)

Q(A2, t)
dt1

)
(40)

where the polynomial Q(A2, t) is defined as Q(A2, t) =
∏
i(A

2 −A2
i (t)).

The ratio of two dual Baker-Akhiezer functions w∗(t,A)
w∗(t(0),A)

is obtained by applying the hyperelliptic invo-
lution. This amounts to the reflection A→ −A in eq.(40). Let us prove the following simple proposition.

Proposition 11. For the Baker-Akhiezer functions w(t, A), w∗(t, A) normalized by

w(t, A)w∗(t, A)′ − w∗(t, A)w(t, A)′ = 2A

we have

S(A) =
Q(A2)√
P(A2)

≡ exp

(
−
∑
k

1
k
J2kA

−2k

)
(41)
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the latter equality is the definition of J2k. We recall that Q(A2) and P(A2) are the polynomials

Q(A2) =
n∏
i=1

(A2 −A2
i ), P(A2) =

2n∏
i=1

(A2 −B2
i )

Proof.
To prove the proposition we use the Wronskian identity

w(t, A)w∗(t, A)′ − w∗(t, A)w(t, A)′ = w(t, A)w∗(t, A)∂1

(
log

w(t, A)
w∗(t, A)

)
= 2A

but using eq.(40) and the fact that w(t,A)
w(t(0),A)

and w∗(t,A)
w∗(t(0),A)

differ by the sign of the square root, we have

∂1

(
log

w(t, A)
w∗(t, A)

)
= 2

A
√
P(A2)

Q(A2)

and the result follows.

Notice that for J2k defined in (41) we have

J2k =
∑
i

A2k
i −

1
2

∑
i

B2k
i

From eq.(41) we see that the normalization of w(t, A) and w∗(t, A) which corresponds to the proper
value of the Wronskian is such that the divisors D and D∗ are composed of Weierstrass points and D+D∗ =
(B1, · · · , B2n). Actually, it is this quite unique normalization which was used by Akhiezer in his original
paper.

Now we are in position to describe the dynamics of S(A) with respect to all times. It is very useful to
define the following strange object

dI(D) =
∑
k≥1

D−2k ∂

∂t2k−1
dD (42)

dI(D) is a 1-form in the D-plane and a vector field with respect to times. We have

Proposition 12.

dI(D) · S(A) =
S(D)S(A)′ − S(A)S(D)′

D2 −A2
dD (43)

Proof.
We give a proof of this proposition for the finite zone solutions, which are our main concern here, but clearly
the formula is quite general. We are sure that a general proof of equation (43) exists, but it must be based
on manipulations with asymptotic formulae. We prefer to work with analytical functions. Anyway, every
solution of KdV can be obtained from the finite-zone ones by a suitable limiting procedure, so considering
finite-zone solutions is not a real restriction.

Let us describe the motion, under the time tl, of the divisor Z(t) of the zeroes of the Baker-Akhiezer
function. Introduce the normalized holomorphic differentials dωi for i = 1, · · · , n and the normalized second
kind differentials with singularity at infinity dω̃2i−1, i ≥ 1∫

aj

dωi = δi,j

∫
aj

dω̃2i−1 = 0, dω̃2i−1(A) = d(A2i−1) +O(A−2)dA for A ∼ ∞

It is well known that, by the Abel map, this motion is transformed into a linear flow on the Jacobi variety.

∂

∂t2l−1

∑
j

∫ Aj

dωk =
∫
bk

dω̃2l−1
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Form this equation one easily finds:

dI(D) ·
∑
j

∫ Aj

dωk =
∫
bk

dω̃D (44)

where dω̃D is a 2-differential defined Γ×Γ0 (Γ0 is the Riemann sphere) parametrized by A and D respectively.
It is useful to think of Γ0 as a realization of the curve Y 2 = X similar to Γ. The a-periods of dω̃D on Γ
vanish. The only singularities of the differential dω̃D are the second order poles at the two points A = ±D:

dω̃D(A) =
( A2 +D2

(A2 −D2)2
+O(1)

)
dAdD

By Riemann’s bilinear relations one easily finds:∫
bk

dω̃D = dωk(D)

Eq.(44) then takes the form

dI(D) ·
∑
j

∫ Aj

dωk = dωk(D) (45)

The normalized differentials are linear combinations of the differentials

dσk(A) =
A2k−2√
P(A2)

dA, k = 1 · · ·n

with coefficients depending on Bi. They do not depend on times. Hence by linearity we can write for dσk
the same equation as (45). Differentiating explicitly we get the following system of equations

n∑
j=1

A2k−2
j√
P(A2

j )
dI(D) ·Aj =

D2k−2√
P(D2)

dD; k = 1 · · ·n

Solving this linear system of equations gives

dI(D) ·A2
j = Aj

Q(D2)√
P(D2)

1
D2 −A2

j

√
P(A2

j )∏
i 6=j(A

2
j −A2

i )
dD =

Q(D2)√
P(D2)

1
D2 −A2

j

∂1A
2
j dD

where we have used eq.(39) in the last step. Finally, using eq.(41) we find

dI(D) · S(A) = S(D)S(A)
∑
j

1
D2 −A2

j

1
A2 −A2

j

∂1(A2
j )dD =

1
D2 −A2

S(D)S(A)
(

log
S(D)
S(A)

)′
dD

The soliton solutions correspond to a rational degeneration of the finite-zone solutions such that

B2j−1 → B̃j ← B2j , j = 1, · · · , n

The points of the divisor Ai and the points B̃j are the coordinates in the n-solitons phase space. In [2] we
gave a detailed discussion of the Hamiltonian structure. In particular we have

∂

∂t2k−1
= {I2k−1, ·}; I2k−1 =

1
2k − 1

∑
i

B̃2k−1
i

The expressions for the local observables also follow easily from the finite-zone case. In particular

J2k(A, B̃) =
n∑
i=1

(
A2k
i − B̃2k

i

)
(46)

The expressions for S2k follow from here.
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4.3 Classical limit of Q and C.
Let us consider the classical limit of the operators Q and C. To this aim, we have to understand the relation
between the quantum and the classical descriptions of the observables. In the quantum case we considered
the form factors i.e. matrix elements of the form

fO(β1, · · · , β2n)−···−+···+ = 〈0|O(0)|β1, · · · , βn; βn+1, · · · , β2n〉

where β1, · · · , βn are rapidities of anti-solitons, βn+1, · · · , β2n are rapidities of solitons. The matrix ele-
ments of this form do not allow a direct semi-classical interpretation, it is necessary to perform a crossing
transformation to the matrix elements between two n-soliton states:

〈β1, · · · , βn|O(0)|βn+1, · · · , β2n〉 = fO(β1 − πi, · · · , βn − πi, βn+1, · · · , β2n)−···−+···+

In [2] it is explained that the formula (2) for this form factor is a result of quantization of n-soliton solutions in
which A1, · · · , An play the role of coordinates, B1, · · · , Bn and Bn+1, · · · , B2n give the collection of eigenvalues
for two eigenstates.

Recall that the generating function for the local descendents of the primary field Φm was written as
follows

Lm(t, y|A|B) = exp
(∑
k≥1

t2k−1I2k−1(B) + y2kJ2k(A|B)
)  n∏

i=1

Ami

2n∏
j=1

B
−m2
j

 (47)

where I2k−1(B) and J2k(A|B) are defined in eqs.(4,5). The expression

exp
(∑
k≥1

y2kJ2k(A|B)
) n∏

i=1

Ami

2n∏
j=1

B
−m2
j


is practically unchanged under the crossing transformation which corresponds to Bi → −Bi for i = 1, · · · , n.
Comparing it with the classical formulae (46) we see that it corresponds to special symmetric ordering of
them, for example

J2k(A|B) =
1
2

(
J2k(A1, · · · , An, B1, · · · , Bn) + J2k(A1, · · · , An, Bn+1, · · · , B2n)

)
This ordering is a prescription which we make for the quantization.

On the other hand the eigenvalues of the Hamiltanians I2k−1(B) under crossing transformation change
to

−I2k−1(B1, · · · , Bn) + I2k−1(Bn+1, · · · , B2n)

i.e. the descendents with respect to I2k−1 correspond to taking commutator of O with I2k−1. Certainly the
classical limit makes sense only for the states with close eigenvalues, so, it is needed that

s2k−1(B1, · · · , Bn)− s2k−1(Bn+1, · · · , B2n) = O(ξ)

Recall that ξ = −i log(q) plays the role of Plank’s constant.
Thus comparing the classical and quantum pictures provides the following result. The quantum gener-

ating function (47) corresponds to the classical generating function

Lclm(t, y) = exp
(∑
k≥1

t2k−1I2k−1

)
· exp

(∑
k≥1

y2kJ2k

)
eimϕ (48)

where · means the application of Poisson brackets. In fact I2k−1 can be replaced by ∂2k−1. The normalization
in the formula for I(B) (4) is chosen in order to provide an exact agreement with the classical formulae.

Now let us consider the classical limit of the operators Q and C in the Neveu-Schwarz sector. For Q we
had the formula

Q =
∫
dD

D
eX(D)ψ(D) =

∫
dD

D
sinh(X(D))ψ(D)
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The latter equation is due to the fact that the fermion is odd. From the definition (21) of X(D), we have in
the classical limit

X(D)→ −iξ
∑
k≥1

D−2k+1I2k−1

Hence the following expression is finite in the classical limit:

Qcl = lim
ξ→0

Q
iξ

=
∫
ψ(D)dI(D) (49)

where dI(D) is the 1-form in D-plane introduced in the previous subsection: dI(D) =
∑
k≥1

D−2kI2k−1dD.

Remark that Qcl can be thought of as a generalized Dirac operator.
For C we had the formula

C =
∫

|D2|>|D1|

dD2

D2

∫
dD1

D1
eX(D1)eX(D2)τe

(
D1

D2

)
ψ(D1)ψ(D2) =

=
∫

|D2|>|D1|

dD2

D2

∫
dD1

D1
cosh(X(D1)) cosh(X(D2))τ−e

(
D1

D2

)
ψ(D1)ψ(D2) +

+
∫

|D2|>|D1|

dD2

D2

∫
dD1

D1
sinh(X(D1)) sinh(X(D2))τ+

e

(
D1

D2

)
ψ(D1)ψ(D2)

where τ+
e and τ−e are even and odd parts of τe:

τ−e (x) =
∞∑
k=1

1− q2k−1

1 + q2k−1
x2k−1, τ+

e (x) = −
∞∑
k=1

1 + q2k

1− q2k
x2k

Obviously when ξ → 0 one has

τ−e (x)→ −iξ x d

dx

(
x

1− x2

)
, τ+

e (x)→ (iξ)−1 log(1− x2)

So, the following expression is finite in the classical limit

Ccl = lim
ξ→0

C
iξ

=

=
∫
ψ(D)

d

dD
ψ(D)dD +

1
2πi

∫
|D2|>|D1|

dI(D2)
∫
dI(D1) log

(
1−

(
D1

D2

)2
)
ψ(D1)ψ(D2) (50)

In the next subsection we are going to apply these operators to description of the classical KdV hierarchy.
Notice that as usual the quantum formulae are far more symmetric than the classical ones.

4.4 The classical equations of motion from Qcl and Ccl.
In this subsection we shall consider only the descendents of the identity, i.e. the pure KdV fields. We have
described this space by the generating function (48):

Lclm=0(t, y) = exp
(∑
k≥1

t2k−1I2k−1

)
· exp

(∑
k≥1

y2kJ2k

)
· 1,

Let us fermionize J2k and apply the equations

〈Ψ−3| Qcl =
w

0, 〈Ψ−5| Ccl =
w

0 (51)

to the description of the equations of motion. In this section the symbol =
w

0 means the vanishing of the
scalar product with the generating of local fields.

We give the list of null-vectors following from these two equations up to the level 5 specifying explicitly
the vectors 〈Ψ−3| and 〈Ψ−5| from which they come. We do not write the descendents with respect to I’s of
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the already listed null vectors:
Null vectors coming from Qcl:

〈−1|ψ∗−1 : ∂1 · 1
〈−1|ψ∗−3 : ∂3 · 1
〈−1|ψ∗−5 : ∂5 · 1

〈−1|ψ∗−3ψ
∗
−1ψ1 : (−∂3S2 + ∂1S4) · 1

Null vectors coming from Ccl:

〈−1|ψ∗−3ψ
∗
−1 : (∂2

1S2 − 4S4 + 6S2
2 +

1
2
∂1∂3) · 1

Obviously these null-vectors coincide with (34). So, in particular, equations (51) imply the KdV equa-
tion itself. We have verified that the null-vectors coincide with those obtained from the Gelfand-Dickey
construction up to level 16. On higher levels we find higher equations of KdV hierarchy.

We have seen that the KdV equation follows from the equations (51). Let us prove the opposite: equations
(51) hold on any solution of KdV. We start with the operator Qcl.

Proposition 13. Let

Qcl =
∫
ψ(D)dI(D) =

∑
k≥1

ψ−2k+1
∂

∂t2k−1

Then if J2k are constructed from a solution of KdV we have

Qcl exp

−∑
k≥1

1
k
J2kh−2k

 | − 1〉 = 0

Proof.
Let us introduce the notation:

T = exp

−∑
k≥1

1
k
J2kh−2k

 = exp
(∫

dA

A
logS(A)h(A)

)

where h(A) =
∑
k≥1

h2kA
2k. We have ψ(D) T = T S−1(D)ψ(D). So

Qcl T | − 1〉 = T

∫
1

S(D)S(A)
ψ(D)h(A)

dA

A
(dI(D) · S(A))| − 1〉

We now use eq.(43) to get∫
1

S(D)S(A)
ψ(D)h(A)

dA

A
(dI(D) · S(A)) =

=
∫
dD

dA

A

1
D2 −A2

[
(logS(A))′ − (logS(D))′

]
ψ(D)h(A)| − 1〉

But

ψ(D)h(A)| − 1〉 =: ψ(D)ψ(A)ψ∗(A) : | − 1〉+
AD

D2 −A2
ψ(A)| − 1〉 |D| > |A|

Let us consider first the integral∫
|D|>|A|

dD

D

dA

A

D

D2 −A2
(logS(A))′

[
: ψ(D)ψ(A)ψ∗(A) : +

AD

D2 −A2
ψ(A)

]
| − 1〉

One can do the integral over D. Notice that the integrand is regular at D = 0. Hence, the contributions
to the integral come from the poles at D2 = A2. The simple pole does not contribute because its residue
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vanishes since we have the product of two fermion fields at the same point in the normal product. The
double pole obviously does not contribute either, and the integral is zero. Next we look at the integral∫

|D|>|A|

dD

D

dA

A

D

D2 −A2
(logS(D))′

[
: ψ(D)ψ(A)ψ∗(A) : +

AD

D2 −A2
ψ(A)

]
| − 1〉

This time one can do the integral over A. But it is clear that the integrand is regular at A = 0, and the
integral also vanishes.

Let us consider now the operator Ccl.

Proposition 14. Let

Ccl =
∫
dDψ(D)

d

dD
ψ(D) +

1
2π

∫
|D1|<|D2|

log
(

1− D2
1

D2
2

)
ψ(D1)ψ(D2)dI(D1)dI(D2)

then if J2k are constructed from a solution to KdV

Ccl exp

−∑
k≥1

1
k
J2kh−2k

 | − 1〉 = 0

Proof.
Let us split Ccl into two pieces Ccl = C1 + C2:

C1 =
∫
dD

D
ψ(D)D

d

dD
ψ(D)

C2 =
1

2πi

∫
|D1|<|D2|

log
(

1− D2
1

D2
2

)
ψ(D1)ψ(D2)dI(D1)dI(D2)

We use the same notation T as in the previous proposition. We treat first the C2 term

C2 T | − 1〉 =
1

2πi

∫
dI(D2)ψ(D2) T

∫
|A1|<|D1|<|D2|

dD1

D1

dA1

A1
log
(

1− D2
1

D2
2

)
D1

D2
1 −A2

1

(
log

S(A1)
S(D1)

)′

×
[
: ψ(D1)ψ(A1)ψ∗(A1) : +

A1D1

D2
1 −A2

1

ψ(A1)
]
| − 1〉

by the same argument as in the previous proof, we see that only the term (logS(A1))′ contributes. This
time however, the double pole gives a non vanishing contribution

1
2πi

∫
|D1|>|A1|

dD1 log
(

1− D2
1

D2
2

)
D1

(D2
1 −A2

1)2
= −1

2
1

D2
2 −A2

1

so that

C2 T | − 1〉 = −1
2

∫
dI(D2)ψ(D2) T

∫
|D2|>|A1|

dA1
(logS(A1))′

D2
2 −A2

1

ψ(A1)| − 1〉

Commuting again ψ(D2) and T we finally get after having computed the integral over D2

C2 T | − 1〉 = T

∫
dA

A2

[
1
2

(logS(A))′′ +
1
4

((logS(A))′)2

]
ψ(A)

d

dA
ψ(A)| − 1〉

The calculation of the C1 term is straightforward

C1 T | − 1〉 = T

∫
dA S−2(A) ψ(A)

d

dA
ψ(A)| − 1〉

Combining the two terms and using the Ricatti equation (36)

2(logS(A))′′ + ((logS(A))′)2 + 4A2S−2(A) = 4(u+A2)
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we get

Ccl T | − 1〉 =
∫
dA

A2
(u+A2)ψ(A)

d

dA
ψ(A)| − 1〉 = 0

the latter integral vanishes since the integrand is regular.

Thus we have shown that the equations (51) provide the complete description of the KdV hierarchy. We
find it quite amazing. It is also interesting that this new description came from pure quantum considerations.

5 Connection with the Whitham method.

There is an surprising relation between the methods of this paper and the Whitham equations for KdV
[16, 17, 18, 19]. The present section is devoted to the description of this relation.

Let us remind briefly what is the Whitham method about. Suppose we consider the solutions of KdV
which are close to a given quasi-periodic solution. The latter is defined by the set of ends of zones B2

1 , · · · , B2
2n.

We know that for the finite-zone solution the dynamics is linearized by the Abel transformation to the Jacobi
variety of the hyper-elliptic surface Y 2 = XP(X) for P(X) =

∏
(X−B2

j ). The idea of the Whitham method
is to average over the fast motion over the Jacobi variety and to introduce ”slow times” Tj which are related
to the original KdV times as Tj = εtj (ε� 1), assuming that the ends of zones Bj become functions of these
”slow times” (recall that the ends of zones were the integrals of motion for the pure finite-zone solutions).

For the given finite-zone solution the observables can be written in terms of θ-functions on the Jacobi
variety, but this kind of formulae is inefficient for writing the averages. One has to undo the Abel trans-
formation, and to write the observables in terms of the divisor Z = (A1, · · · , An). The formulae for the
observables are much more simple in these variables, and the averages can be written as abelian integrals,
the Jacobian due to the Abel transformation is easy to calculate. The result of this calculation is as follows
[17]. Every observable O can be written as an even symmetric function LO(A1, · · · , An) (depending on B’s
as on parameters), and for the average we have

〈〈 O 〉〉 = ∆−1

∫
a1

dA1√
P(A2

1)
· · ·
∫
an

dAn√
P(A2

n)
LO(A1, · · · , An)

∏
i<j

(A2
i −A2

j )

where

∆ = det

∫
ai

A2j−2dA√
P(A2)


i,j=1,···n

The similarity of this formula with the formula for the form factors (1) is the first intriguing fact. Indeed,
we have the following dictionary. For the local observables, we have

LO ⇐⇒ LO

For the weight of integration, we have

1√
P(A)

⇐⇒
2n∏
j=1

ψ(A,Bj)

But the most striking feature is that the cycles of integration are replaced by functions of ai = A2ν
i

cycle ai ⇐⇒ a−ii

The coincidence between the notations for ai-variables and ai-cycles is therefore not fortuitous. The expla-
nation of the fact that the cycles are replaced by these functions is given in [2], where it was shown that the
factor

∏
i a
−i
i selects the classical trajectory in the semi-classical approximation of eq.(2). So, the solution of

a non trivial, full fledged, quantum field theory has provided us with a very subtle definition of a quantum
Riemann surface.

The main result of the Whitham theory is that the averaged equations of motion can be written in the
following form:

∂

∂T2p+1
dω̃2q+1(A) =

∂

∂T2q+1
dω̃2p+1(A)
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where, as earlier, dω̃2q+1, dω̃2p+1 are normalized second kind differentials with prescribed singularity at
infinity:

dω̃2l+1(A) = d(A2l+1) +O(A−2)dA,
∫
aj

dω̃2l+1 = 0

In fact every equation of this type contains many partial differential equations for Bj because one can
decompose it with respect to the parameter A. To our knowledge these equations have never been deduced
directly from the averaging integrals except for the special case p = 1, q = 2 which was considered in the
pioneering paper [17]. We want to show that the methods of this paper allow to do that, also we shall also
explain how to describe other equations of the hierarchy.

As it has been shown in this paper the classical observables can be obtained from the generating function:

exp(
∑
k≥1

t2k−1I2k−1) · exp(
∑
k≥1

y2kJ2k) (52)

In the Whitham case the KdV times become fast which means that I2p−1 = εÎ2p−1 where Î2p−1 denotes
the Poisson bracket with corresponding Hamiltonian of the averaged hierarchy. To keep the first multiplier
in (52) finite one has to pass to the slow times T2k−1. So, the observables for the averaged hierarchy are
generated by

〈〈L0(T, y|B)〉〉 = exp(
∑
k≥1

T2k−1Î2k−1) · 〈〈 exp(
∑
k≥1

y2kJ2k) 〉〉

Let us repeat that the average in this formulae depends only on Bj which are supposed to be functions of
slow times, the multiplier with Î2k−1 corresponds to derivations with respect to the slow times.

The averaged formulae becomes really beautiful with the fermionic generating function:

〈〈L̂0(B)〉〉| − 1〉 = ∆−1 g(B) 〈〈ψ∗〉〉1 · · · 〈〈ψ∗〉〉n| − 1− 2n〉 (53)

where

〈〈ψ∗〉〉j =
∫
aj

dAA2n−1√
P(A2)

ψ∗(A),

g(B) is the same as in quantum case (16).
Remind that we have rewritten the equations of KdV hierarchy in the weak sense as follows

〈Ψ−5| Ccl =
w

0, 〈Ψ−3| Qcl =
w

0

For the averaged hierarchy these equations have to be replaced by

〈Ψ−5| C0 =
w

0, 〈Ψ−3| Q0 =
w

0 (54)

In this section, the symbol =
w

0 means vanishing of the matrix elements with the averaged generating function
(53). The averaged C0 and Q0 are

C0 =
∫
ψ(D)

d

dD
ψ(D)dD, Q0 =

∫
ψ(D)dÎ(D)

where the terms with I(D) are omitted in the definition of C0 comparing with Ccl (50) because dI(D) is of
order ε, the definition of Q0 is practically the same as in (49) because the latter is homogeneous in dI(D).
Let us explain the implications of the equations (54) for the averaged hierarchy.

Proposition 15. The equation
〈Ψ−5|C0 =

w

0

for the averaged hierarchy follows from the Riemann bilinear relation for hyper-elliptic integrals.

Proof.
The Riemann bilinear relation for the hyper-elliptic integrals is equivalent to the formula∫

c1

dA1√
P(A2

1)

∫
c2

dA2√
P(A2

2)
C(A1, A2) = c1 ◦ c2
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where c1 ◦ c2 is the intersection number of cycles, the anti-symmetric polynomial C(A1, A2) is given by

C(A1, A2) = C ′(A1, A2)− C ′(A2, A1)

where

C ′(A1, A2) =
√
P(A2

1)
d

dA1

(√
P(A2

1)
A1

A2
1 −A2

2

)
(see, for example, [11] for a relevant discussion).

On the other hand we have
C0 g(B) = g(B) Ĉ0

where
Ĉ0 =

∫
P(D2)D−4nψ(D)

d

dD
ψ(D)dD

Consider the formula for averaged observables (53). Suppose that we undo the averaging considering instead
of

〈Ψ−1|〈〈ψ∗〉〉1 · · · 〈〈ψ∗〉〉n| − 2n− 1〉

the polynomial
〈Ψ−1|ψ∗(A1) · · ·ψ∗(An)| − 2n− 1〉

∏
i

A2n−1
i

The averaging corresponds to integrating over closed cycles on the surface, so the latter polynomial is defined
up to exact forms of the following kind

n∑
i=1

(−1)i M(A2
1, · · · , Â2

i , · · · , A
2
n)
√
P(A2

i )
d

dAi

(√
P(A2

i )Q(Ai)
)

where Q(A) is an arbitrary polynomial and M(A2
1, · · · , · · · , A2

n−1) is anti-symmetric.
It is clear that the statement of the proposition will be proven if we show that for every 〈Ψ−5| up to

exact forms one has

〈Ψ−5|Ĉ0ψ∗(A1) · · ·ψ∗(An)| − 1− 2n〉
∏
j

A2n−1
j '

'
∑
i<j

(−1)i+jM(A2
1, · · · , Â2

i , · · · , Â2
j , · · ·A

2
n)C(Ai, Aj) (55)

for some anti-symmetric M(A2
1, · · · , A2

n−2).
Just like in the proof of Proposition 2 from Section 3 we have three possibilities for 〈Ψ−5| which can give

a non-trivial result:
1. The depth of 〈Ψ−5| is greater than −2n− 1
2. The vector 〈Ψ−5| is obtained from a vector 〈Ψ−1| whose depth is greater than −2n− 1 by application
of ψ∗−2p−1ψ

∗
−2q−1 with q > p ≥ n (i.e. there are two holes below −2n− 1).

3.The vector 〈Ψ−5| is obtained from a vector 〈Ψ−3| whose depth is greater than −2n− 1 by application
of ψ∗−2p−1 with p ≥ n (i.e. there is one hole below −2n− 1).

In the first case using the identity

2
∫

|D|>|A1|,|A2|

√
P(D2)

D2 −A2
1

d

dD

(√
P(D2)

D2 −A2
2

)
DdD = C(A1, A2)

one easily gets the formula (55) with

M(A2
1, · · · , A2

n−2) = 〈Ψ−5|ψ∗(A1) · · ·ψ∗(An−2)| − 1− 2n〉
∏
j

A2n−1
j

In the second case it is necessary that in the expression 〈Ψ−1|ψ∗−2p−1ψ
∗
−2q−1 Ĉ0 the operator Ĉ0 annihilates

two holes. Hence one finds the integral

〈Ψ−1|2(p− q)
∫
P(D2)D−4n+2p+2q+1dD = 0
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It vanishes because p, q ≥ n.
Finally, in the third case it is necessary that in the expression 〈Ψ−3|ψ∗−2p−1 Ĉ0 the operator Ĉ0 annihilates
the hole. This gives

〈Ψ−3|
∫ (
P(D2) +D

d

dD
P(D2)

)
D−4n+2pψ(D)dD

So, in the matrix elements we shall find the polynomials∫
|D|>|Aj |

(
P(D2) +D

d

dD
P(D2)

)
D−4n+2p 1

D2 −A2
j

dD = 2
√
P(A2

j )
d

dAj

(√
P(A2

j )A
2p−2n+1
j

)

which corresponds to an exact form.

The similarity of the proof of this proposition with that of Proposition 2 of Section 3 is quite impressive.
Let us consider now the operator Q0. It is responsible for the equation of motion as shows the following

proposition.

Proposition 16. The equations

∂

∂T2p+1
dω̃2q+1(A) =

∂

∂T2q+1
dω̃2p+1(A) (56)

follow from

〈Ψ−3|Q0 =
w

0 〈Ψ−5|C0 =
w

0 (57)

Proof.
We will show that the Whitham equations (56) follow by considering the vectors

〈Ψ−3| = 〈−1|ψ∗−2p−1ψ
∗
−2q−1ψ2s+1

The proof goes in two steps. First we shall show that the equation (57) implies that:

(2p+ 1)Î2q+1〈−1|ψ2p+1ψ
∗(A) − (2q + 1)Î2p+1〈−1|ψ2q+1ψ

∗(A) =
w

0 (58)

Indeed, applying Q0 to this vector 〈Ψ−3| gives

〈−1|ψ∗−2p−1ψ
∗
−2q−1ψ2s+1 Q0 = Î2p+1〈−1|ψ∗−2q−1ψ2s+1 − Î2q+1〈−1|ψ∗−2p−1ψ2s+1 =

w

0

Now notice that

(2s+ 1)〈−1|ψ∗−2p−1ψ2s+1 = (2p+ 1)〈−1|ψ∗−2s−1ψ2p+1 + 〈−1|ψ∗−2s−1ψ
∗
−2p−1C0

Hence having in mind the equation 〈Ψ−5| C0 =
w

0 one gets

(2p+ 1)Î2q+1〈−1|ψ2p+1ψ
∗
−2s−1 − (2q + 1)Î2p+1〈−1|ψ2q+1ψ

∗
−2s−1 =

w

0

Since it is true for every s we can write it for the generating function as in the eq.(58).
The second step consists in computing the following average

∆−1〈−1|ψ2p+1ψ
∗(A) g(B) 〈〈ψ∗〉〉1 · · · 〈〈ψ∗〉〉n| − 1− 2n〉

Noticing that

〈−1|ψ2p+1ψ
∗(A) g(B) = 〈−1|

∫
dDD−2n+2p

√
P(D2)

A2n√
P(A2)

ψ(D)ψ∗(A)

and calculating the matrix element in a usual way we get the answer:

∆−1〈−1|ψ2p+1ψ
∗(A) g(B) 〈〈ψ∗〉〉1 · · · 〈〈ψ∗〉〉n| − 1− 2n〉 = ∆−1A det(M(A))
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where M(A) is (n+ 1)× (n+ 1) matrix with the following matrix elements

M(A)i,j =
∫
aj

D2(i−1)√
P(D2)

dD, i, j = 1, · · · , n

M(A)i,n+1 =
A2(i−1)√
P(A2)

, i = 1, · · · , n

M(A)n+1,j =
∫
aj

Qp(D2)√
P(D2)

, j = 1, · · · , n

M(A)n+1,n+1 =
Qp(A2)√
P(A2)

where

Qp(A2) =
∫

|D|>|A|

dD
D2p+1

D2 −A2

√
P(D2) =

[√
P(A2)A2p

]
+

where [· · ·]+ means taking the polynomial part in the expansion around infinity. It is quite obvious that the
normalized differential dω̃2p+1(A) is given by

dω̃2p+1(A) = (2p+ 1)∆−1 det(M(A))dA

which finishes the proof of the proposition. Returning to the beginning of the proof one finds that the
expression

(2p+ 1)〈−1|ψ2p+1ψ
∗(A)

dA

A

can be considered as ”symbol” of the normalized differential dω̃2p+1(A).

The equation 〈Ψ−3| Q0 =
w

0 for more complicated states 〈Ψ−3| than those considered in the Proposition
16 implies other linear partial differential equations for Bj , so, we get the whole Whitham hierarchy. However
the equations (56) are the only ones with derivatives with respect to only two times. We shall not go further
into the study of the Whitham hierarchy, because it is not our goal. What we really wanted to do was to
show the remarkable parallel between the Whitham method and the quantum form factor formulae. We
hope that this goal is achieved.

6 Appendix A

In this appendix we explain why the condition

L
(n)
O (A1, · · · , An|B1, · · · , B2n)

∣∣∣
B2n=−B1, An=±B2n−1

=

= −ε±L(n−1)
O (A1, · · · , An−1|B2, · · · , B2n−1) (59)

(ε = + or − respectively for the operators Φ2k and their descendents or Φ2k+1 and their descendents) is
sufficient for the locality of the operator whose form factors are given by

fO(β1, β2, · · · , β2n)−···−+···+ =

= cn
∏
i<j

ζ(βi − βj)
n∏
i=1

2n∏
j=n+1

1
sinh ν(βj − βi − πi)

exp(−1
2

(ν(n− 1)− n)
∑

βj)

×f̂O(β1, β2, · · · , β2n)−···−+···+

where

f̂O(β1, β2, · · · , β2n)−···−+···+ =

=
1

(2πi)n

∫
dA1 · · ·

∫
dAn

n∏
i=1

2n∏
j=1

ψ(Ai, Bj)
∏
i<j

(A2
i −A2

j ) L
(n)
O (A1, · · · , An|B1, · · · , B2n)

n∏
i=1

a−ii
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The calculations which we are going to make are well known even for more general case [3]. However, we
want to repeat them for our particular situation for the completeness of the exposition.

In the case of diagonal scattering the only non-trivial requirement for the form factors is the following:

2πi resβ2n=β1+πifO(β1, β2, · · · , β2n−1, · · ·β2n)−···−+···+ =

= fO(β2, · · · , · · · , β2n−1)−···−+···+

2n−1∏
j=2

S(βj − β1)− ε

 (60)

where the S-matrix in our case is

S(β2 − β1) =
ν−1∏
j=1

sinh 1
2 (β2 − β1 + πi

ν j)
sinh 1

2 (β2 − β1 − πi
ν j)

=
ψ(−B1, B2)
ψ(B1, B2)

Using the identity [3]

exp(−1
2

(ν − 1)(β1 + βj))
ζ(β1 − βj)ζ(βj − β1 − πi)

(sinh ν(βj − β1))2
=

1
ψ(B1, Bj)

one finds that the relation (60) is equivalent to

f̂O(β1, β2, · · · , β2n−1, β2n)−···−+···+

∣∣∣
β2n=β1+πi

=

=
1

2B1
f̂O(β2, · · · , β2n−1)−···−+···+

2n−1∏
j=2

ψ(−B1, Bj)− ε
2n−1∏
j=2

ψ(B1, Bj)


if the constant c is taken as c = 2ν(ζ(−πi))−1. Explicitly the LHS of this equation is

1
(2πi)n

∫
dA1 · · ·

∫
dAn

n∏
i=1

ai − b1
A2
i −B2

1

2n−1∏
j=2

ψ(Ai, Bj)

×
∏
i<j

(A2
i −A2

j ) L
(n)
O (A1, · · · , An|B1, · · · , B2n−1,−B1)

n∏
i=1

a−ii (61)

where we have used the identity

ψ(A,B)ψ(A,−B) =
a− b

A2 −B2

Let us consider the integral over An. If the contour is such that |An| > |B1| we can replace in this integral
a−nn by b−n+1

1 (an − b1)−1. Indeed

b−n+1
1

(an − b1)
= a−nn +

n−1∑
j=1

a−jn b−n+j
1 +

∑
j≥n+1

a−jn b−n+j
1

the sum
n−1∑
j=1

can be omitted due to anti-symmetry with respect to aj , j = 1, · · · , n−1, the sum
∑

j≥n+1

can be

omitted because the integrand decreases faster than A−2
n as An →∞. Thus the integral over An becomes

b−n+1
1

1
2πi

∫
An>B1

dAn
1

A2
n −B2

1

2n−1∏
j=2

ψ(An, Bj)
∏
i<n

(A2
i −A2

n) L(n)
O (A1, · · · , An|B1, · · · , B2n−1,−B1) =

=
1
2
b−n+1
1 B−1

1

∏
i<n

(A2
i −B2

1)

2n−1∏
j=2

ψ(−B1, Bj)L
(n)
O (A1, · · · , An−1,−B1|B1, · · · , B2n−1,−B1)−

−
2n−1∏
j=2

ψ(B1, Bj)L
(n)
O (A1, · · · , An−1, B1|B1, · · · , B2n−1,−B1)


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Let us substitute this expression into (61):

1
2B1

1
(2πi)n−1

∫
dA1 · · ·

∫
dAn−1

n−1∏
i=1

2n−1∏
j=2

ψ(Ai, Bj)
∏
i<j

(A2
i −A2

j )b
−n+1
1

n−1∏
i=1

a−ii (ai − b1)

×

2n−1∏
j=2

ψ(−B1, Bj)L
(n)
O (A1, · · · , An−1,−B1|B1, · · · , B2n−1,−B1)−

−
2n−1∏
j=2

ψ(B1, Bj)L
(n)
O (A1, · · · , An−1, B1|B1, · · · , B2n−1,−B1)

 =

=
1

2B1

1
(2πi)n−1

∫
dA1 · · ·

∫
dAn−1

n−1∏
i=1

2n−1∏
j=2

ψ(Ai, Bj)
∏
i<j

(A2
i −A2

j )
n−1∏
i=1

a−ii

×

2n−1∏
j=2

ψ(−B1, Bj)L
(n)
O (A1, · · · , An−1,−B1|B1, · · · , B2n−1,−B1)−

−
2n−1∏
j=2

ψ(B1, Bj)L
(n)
O (A1, · · · , An−1, B1|B1, · · · , B2n−1,−B1)

 (62)

where we have replaced b−1
1 a−ii (ai− b1) by −a−ii for the following reason: for a1 this expression is b−1

1 −a
−1
1 ,

the integrand with b−1
1 is regular at zero, for ai with i > 1 we use anti-symmetry. The final formula (62)

shows that the equation (59) is sufficient for locality.

7 Appendix B

The reflectionless case is a rather degenerate one, so, the deformed Riemann bilinear identity [4] does not
exist in complete form. However for our needs we use only the consequence of the deformed Riemann
bilinear identity which allows a simple proof in the reflectionless case. We give this proof here for the sake
of completeness. We have used the following fact:∫

dA1

∫
dA2

2∏
i=1

2n∏
j=1

ψ(Ai, Bj)C(A1, A2)ak1a
l
2 = 0 ∀k, l (63)

where we had the expression for C(A1, A2):

C(A1, A2) =
1

A1A2

{
A1 −A2

A1 +A2
(P (A1)P (A2)− P (−A1)P (−A2)) + (P (−A1)P (A2)− P (A1)P (−A2))

}
(64)

Let us introduce the functions

F (A) =
2n∏
j=1

ψ(A,Bj)P (A), G(A) =
2n∏
j=1

ψ(A,Bj)P (−A)

Recall that the function ψ(A,B) satisfies the difference equation

ψ(Aq,B) =
(
B −A
B + qA

)
ψ(A,B), (65)

which implies that
F (Aq) = G(A)

The integral (63) can be rewritten as follows:∫
dA1

A1

∫
dA2

A2

{
A1 −A2

A1 +A2
(F (A1)F (A2)− F (qA1)F (qA2)) + (F (qA1)F (A2)− F (A1)F (qA2))

}
ak1a

l
2
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Changing variables Ai → qAi where needed one easily finds that this integral equals zero. Recall that
ai = A2ν

i and q2ν = 1, so ak1a
l
2 do not change under these changes of variables.

Similar proof for the case of generic coupling constant is more complicated because one crosses singularities
when changing variables and moving contours.

Now let us prove the Proposition 1. We want to find equivalent expressions for C(A1, A2). Let us rewrite
the expression (64) in the integral form:

C(A1, A2) = C ′(A1, A2)− C ′(A2, A1)

where

C ′(A1, A2) =
1

2A2

(
P (A1)P (A2)
A2 +A1

+
P (A1)P (−A2)

A2 −A1
− P (−A1)P (A2)

A2 −A1
− P (−A2)P (−A1)

A2 +A1

)
=

= A1

∫
|D2|>|D1|

dD2

∫
|D1|>|A1|,|A2|

dD1
P (D1)P (D2)

(D1 +D2)(D2
1 −A2

1)(D2
2 −A2

2)

Let us modify this expression by adding ”exact forms” in variables A1. It is convenient to use the formula

Q(A1)P (A1)− qQ(qA1)P (−A1) =

=
∫

|D1|>|A1|

dD1
P (D1)

(D2
1 −A2

1)
(Q(D1)(D1 +A1)− qQ(−qD1)(D1 −A1))

Suppose that the polynomial Q(A) solves the equation

Q(D1) + qQ(−qD1) =
∫

|D2|>|D1|

dD2
P (D2)

(D1 +D2)(D2
2 −A2

2)
(66)

(obviously the RHS of this equation is a polynomial) then we can rewrite the expression for C ′(A1, A2) in
the following equivalent form

C ′(A1, A2) =
∫

|D1|>|A1|

dD1D1
P (D1)

(D2
1 −A2

1)
(Q(D1)− qQ(−qD1))

Now we have to solve the equation (66). It is simple:

Q(D1) =
1
D1

∫
|D2|>|D1|

dD2η

(
D1

D2

)
P (D2)

(D2
2 −A2

2)

where

η(x) =
∞∑
k=0

1
1 + q2k+1

x2k −
∞∑
k=1

1
1− q2k

x2k−1

Hence

C ′(A1, A2) =
∫

|D2|>|D1|

dD2

∫
|D1|>|A1|

dD1P (D1)P (D2)τe

(
D1

D2

)
1

(D2
1 −A2

1)(D2
2 −A2

2)

where

τe(x) =
∞∑
k=1

1− q2k−1

1 + q2k−1
x2k−1 −

∞∑
k=1

1 + q2k

1− q2k
x2k

The expression for Ce(A1, A2) given in Proposition 1 follows from these formulae. The expression for
Co(A1, A2) can be obtained in a similar way eliminating the even degrees of A1 from C ′(A1, A2).
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