research

A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems

Abstract

In this paper we introduce a new kind of Lax-Oleinik type operator with parameters associated with positive definite Lagrangian systems for both the time-periodic case and the time-independent case. On one hand, the new family of Lax-Oleinik type operators with an arbitrary uC(M,R1)u\in C(M,\mathbb{R}^1) as initial condition converges to a backward weak KAM solution in the time-periodic case, while it was shown by Fathi and Mather that there is no such convergence of the Lax-Oleinik semigroup. On the other hand, the new family of Lax-Oleinik type operators with an arbitrary uC(M,R1)u\in C(M,\mathbb{R}^1) as initial condition converges to a backward weak KAM solution faster than the Lax-Oleinik semigroup in the time-independent case.Comment: We give a new definition of Lax-Oleinik type operator; add some reference

    Similar works

    Full text

    thumbnail-image

    Available Versions