15 research outputs found

    Genotoxicity profile of fexinidazole—a drug candidate in clinical development for human African trypanomiasis (sleeping sickness)

    Get PDF
    The parasitic disease human African trypanomiasis (HAT), also known as sleeping sickness, is a highly neglected fatal condition endemic in sub-Saharan Africa, which is poorly treated with medicines that are toxic, no longer effective or very difficult to administer. New, safe, effective and easy-to-use treatments are urgently needed. Many nitroimidazoles possess antibacterial and antiprotozoal activity and examples such as tinidazole are used to treat trichomoniasis and guardiasis, but concerns about toxicity including genotoxicity limit their usefulness. Fexinidazole, a 2-substituted 5-nitroimidazole rediscovered by the Drugs for Neglected Diseases initiative (DNDi) after extensive compound mining of public and pharmaceutical company databases, has the potential to become a short-course, safe and effective oral treatment, curing both acute and chronic HAT. This paper describes the genotoxicity profile of fexinidazole and its two active metabolites, the sulfoxide and sulfone derivatives. All the three compounds are mutagenic in the Salmonella/Ames test; however, mutagenicity is either attenuated or lost in Ames Salmonella strains that lack one or more nitroreductase(s). It is known that these enzymes can nitroreduce compounds with low redox potentials, whereas their mammalian cell counterparts cannot, under normal conditions. Fexinidazole and its metabolites have low redox potentials and all mammalian cell assays to detect genetic toxicity, conducted for this study either in vitro (micronucleus test in human lymphocytes) or in vivo (ex vivo unscheduled DNA synthesis in rats; bone marrow micronucleus test in mice), were negative. Thus, fexinidazole does not pose a genotoxic hazard to patients and represents a promising drug candidate for HAT. Fexinidazole is expected to enter Phase II clinical trials in 201

    Nutrition, Diabetes and Tuberculosis in the Epidemiological Transition

    Get PDF
    BACKGROUND: Diabetes prevalence and body mass index reflect the nutritional profile of populations but have opposing effects on tuberculosis risk. Interactions between diabetes and BMI could help or hinder TB control in growing, aging, urbanizing populations. METHODS AND FINDINGS: We compiled data describing temporal changes in BMI, diabetes prevalence and population age structure in rural and urban areas for men and women in countries with high (India) and low (Rep. Korea) TB burdens. Using published data on the risks of TB associated with these factors, we calculated expected changes in TB incidence between 1998 and 2008. In India, TB incidence cases would have increased (28% from 1.7 m to 2.1 m) faster than population size (22%) because of adverse effects of aging, urbanization, changing BMI and rising diabetes prevalence, generating an increase in TB incidence per capita of 5.5% in 10 years. In India, general nutritional improvements were offset by a fall in BMI among the majority of men who live in rural areas. The growing prevalence of diabetes in India increased the annual number of TB cases in people with diabetes by 46% between 1998 and 2008. In Korea, by contrast, the number of TB cases increased more slowly (6.1% from 40,200 to 42,800) than population size (14%) because of positive effects of urbanization, increasing BMI and falling diabetes prevalence. Consequently, TB incidence per capita fell by 7.8% in 10 years. Rapid population aging was the most significant adverse effect in Korea. CONCLUSIONS: Nutritional and demographic changes had stronger adverse effects on TB in high-incidence India than in lower-incidence Korea. The unfavourable effects in both countries can be overcome by early drug treatment but, if left unchecked, could lead to an accelerating rise in TB incidence. The prevention and management of risk factors for TB would reinforce TB control by chemotherapy

    Fexinidazole – A New Oral Nitroimidazole Drug Candidate Entering Clinical Development for the Treatment of Sleeping Sickness

    Get PDF
    This article describes the preclinical profile of fexinidazole, a new drug candidate with the potential to become a novel, oral, safe and effective short-course treatment for curing both stage 1 and 2 human African trypanosomiasis and replace the old and highly problematic treatment modalities available today. Fexinidazole is orally available and rapidly metabolized in two metabolites having equivalent biological activity to the parent and contributing significantly to the in vivo efficacy in animal models of both stage 1 and 2 HAT. Animal toxicology studies indicate that fexinidazole has an excellent safety profile, with no particular issues identified. Fexinidazole is a 5-nitroimidazole and, whilst it is Ames-positive, it is devoid of any genetic toxicity in mammalian cells and therefore does not pose a genotoxic risk for use in man. Fexinidazole, which was rediscovered through a process of compound mining, is the first new drug candidate for stage 2 HAT having entered clinical trials in thirty years, and has the potential to revolutionize therapy of this fatal disease at a cost that is acceptable in the endemic regions

    Nutrition, diabetes and tuberculosis in the epidemiological transition

    Get PDF
    The original publication is available at http:/www.plosone.orgBackground: Diabetes prevalence and body mass index reflect the nutritional profile of populations but have opposing effects on tuberculosis risk. Interactions between diabetes and BMI could help or hinder TB control in growing, aging, urbanizing populations. Methods and Findings: We compiled data describing temporal changes in BMI, diabetes prevalence and population age structure in rural and urban areas for men and women in countries with high (India) and low (Rep. Korea) TB burdens. Using published data on the risks of TB associated with these factors, we calculated expected changes in TB incidence between 1998 and 2008. In India, TB incidence cases would have increased (28% from 1.7 m to 2.1 m) faster than population size (22%) because of adverse effects of aging, urbanization, changing BMI and rising diabetes prevalence, generating an increase in TB incidence per capita of 5.5% in 10 years. In India, general nutritional improvements were offset by a fall in BMI among the majority of men who live in rural areas. The growing prevalence of diabetes in India increased the annual number of TB cases in people with diabetes by 46% between 1998 and 2008. In Korea, by contrast, the number of TB cases increased more slowly (6.1% from 40,200 to 42,800) than population size (14%) because of positive effects of urbanization, increasing BMI and falling diabetes prevalence. Consequently, TB incidence per capita fell by 7.8% in 10 years. Rapid population aging was the most significant adverse effect in Korea. Conclusions: Nutritional and demographic changes had stronger adverse effects on TB in high-incidence India than in lower-incidence Korea. The unfavourable effects in both countries can be overcome by early drug treatment but, if left unchecked, could lead to an accelerating rise in TB incidence. The prevention and management of risk factors for TB would reinforce TB control by chemotherapy. © 2011 Dye et al

    Antitrypanosomal Activity of Fexinidazole, a New Oral Nitroimidazole Drug Candidate for Treatment of Sleeping Sickness ▿

    No full text
    Fexinidazole is a 5-nitroimidazole drug currently in clinical development for the treatment of human sleeping sickness (human African trypanosomiasis [HAT]), caused by infection with species of the protozoan parasite Trypanosoma brucei. The compound and its two principal metabolites, sulfoxide and sulfone, have been assessed for their ability to kill a range of T. brucei parasite strains in vitro and to cure both acute and chronic HAT disease models in the mouse. The parent molecule and both metabolites have shown trypanocidal activity in vitro in the 0.7-to-3.3 ÎŒM (0.2-to-0.9 ÎŒg/ml) range against all parasite strains tested. In vivo, fexinidazole is orally effective in curing both acute and chronic diseases in the mouse at doses of 100 mg/kg of body weight/day for 4 days and 200 mg/kg/day for 5 days, respectively. Pharmacokinetic data indicate that it is likely that the sulfoxide and sulfone metabolites provide most, if not all, of the in vivo killing activity. Fexinidazole and its metabolites require up to 48 h exposure in order to induce maximal trypanocidal efficacy in vitro. The parent drug and its metabolites show no in vitro cross-reactivity in terms of trypanocidal activity with either themselves or other known trypanocidal drugs in use in humans. The in vitro and in vivo antitrypanosomal activities of fexinidazole and its two principal metabolites provide evidence that the compound has the potential to be an effective oral treatment for both the T. b. gambiense and T. b. rhodesiense forms of human sleeping sickness and both stages of the disease

    Fexinidazole : a potential new drug candidate for Chagas disease.

    Get PDF
    Background: New safe and effective treatments for Chagas disease (CD) are urgently needed. Current chemotherapy options for CD have significant limitations, including failure to uniformly achieve parasitological cure or prevent the chronic phase of CD, and safety and tolerability concerns. Fexinidazole, a 2-subsituted 5-nitroimidazole drug candidate rediscovered following extensive compound mining by the Drugs for Neglected Diseases initiative and currently in Phase I clinical study for the treatment of human African trypanosomiasis, was evaluated in experimental models of acute and chronic CD caused by different strains of Trypanosoma cruzi. Methods and Findings: We investigated the in vivo activity of fexinidazole against T. cruzi, using mice as hosts. The T. cruzi strains used in the study were previously characterized in murine models as susceptible (CL strain), partially resistant (Y strain), and resistant (Colombian and VL-10 strains) to the drugs currently in clinical use, benznidazole and nifurtimox. Our results demonstrated that fexinidazole was effective in suppressing parasitemia and preventing death in infected animals for all strains tested. In addition, assessment of definitive parasite clearance (cure) through parasitological, PCR, and serological methods showed cure rates of 80.0% against CL and Y strains, 88.9% against VL-10 strain, and 77.8% against Colombian strain among animals treated during acute phase, and 70% (VL-10 strain) in those treated in chronic phase. Benznidazole had a similar effect against susceptible and partially resistant T. cruzi strains. Fexinidazole treatment was also shown to reduce myocarditis in all animals infected with VL-10 or Colombian resistant T. cruzi strains, although parasite eradication was not achieved in all treated animals at the tested doses. Conclusions: Fexinidazole is an effective oral treatment of acute and chronic experimental CD caused by benznidazolesusceptible, partially resistant, and resistant T. cruzi. These findings illustrate the potential of fexinidazole as a drug candidate for the treatment of human CD

    Parasitemia levels after 7 days of oral administration of fexinidazole.

    No full text
    <p>Parasitemia curve obtained from 6 mice infected with 5000 trypomastigotes of <i>T. cruzi</i> Y strain and treated daily with doses of fexinidazole 100, 200, and 300 mg/kg of body weight (mpk) or benznidazole 100 mpk for 7 consecutive days. Arrows indicate the first and the last day of treatment. IC: infected and untreated control.</p
    corecore