31 research outputs found

    Aumento de dosis génica de los genes DPL1, SSD1 y SRP101 en Saccharomyces cerevisiae y fenotipo de tolerancia a acidificación intracelular

    Full text link
    [ES] El pH alto intracelular es una señal promotora del crecimiento y proliferación de las células pero sus mecanismos no son bien conocidos. En un trabajo previo se había identificado una región genómica de levadura que al ser transformada en plásmido de copia simple aumenta el crecimiento de la levadura en condiciones de acidificación intracelular. Esta región contiene tres genes, DPL1, SSD1 y SRP101 y en este trabajo hemos identificado el gen SSD1 como el responsable del fenotipo de pH. Este gen codifica un regulador del crecimiento de la levadura que coopera con otros reguladores importantes como la proteína kinasa TORC1 y la proteína fosfatasa Sit4. El mecanismo de Ssd1 se basa en unir y estabilizar RNA mensajeros de ciclinas y el alelo clonado es la forma activa del gen presente en levaduras silvestres, mientras que las cepas de laboratorio poseen una forma truncada inactiva. Ssd1 también mejora el crecimiento en condiciones normales, sin estrés ácido, en medio con amonio pero no en medio con aminoácidos como fuente de nitrógeno. Como los aminoácidos y el pH alto activan TORC1, podemos sugerir que Ssd1 aumenta la expresión de ciclinas cuando TORC1 no está completamente activado por pH alto o por aminoácidos.[EN] Intracellular pH is a signal promoting cell growth and proliferation by poorly known mechanisms. In previous work, a yeast genomic region was identified that by transformation in single copy plasmid improves yeast growth under conditions of intracellular acidification. This region contains three genes, DPL1, SSD1 and SRP101, and in the present work we have identified SSD1 as the one responsible of the pH phenotype. This gene encodes a regulator of yeast growth that cooperates with other important regulators such as the protein kinase TORC1 and the protein phosphatase Sit4. The mechanism of Ssd1 consists on binding and stabilizing of cyclin mRNAs and the cloned allele is the active form present in wild yeast while laboratory strains express a truncated, inactive form. Ssd1 also improves growth under normal conditions, without pH stress, in media with ammonia but not in media with amino acids as nitrogen source. As amino acids and high pH activate TORC1, it may be suggested that Ssd1 increases cyclin expression when TORC1 is not fully activated by either high pH or amino acidsBernabeu Lorenzo, M. (2015). Aumento de dosis génica de los genes DPL1, SSD1 y SRP101 en Saccharomyces cerevisiae y fenotipo de tolerancia a acidificación intracelular. http://hdl.handle.net/10251/54365.TFG

    Conceptual Modelling of Complex Network Management Systems

    Get PDF
    Society, as we know it today, is completely dependent on computer networks, Internet and distributed systems, which place at our disposal the necessary services to perform our daily tasks. Moreover, and unconsciously, all services and distributed systems require network management systems. These systems allow us to, in general, maintain, manage, configure, scale, adapt, modify, edit, protect or improve the main distributed systems. Their role is secondary and is unknown and transparent to the users. They provide the necessary support to maintain the distributed systems whose services we use every day. If we don’t consider network management systems during the development stage of main distributed systems, then there could be serious consequences or even total failures in the development of the distributed systems. It is necessary, therefore, to consider the management of the systems within the design of distributed systems and systematize their conception to minimize the impact of the management of networks within the project of distributed systems. In this paper, we present a formalization method of the conceptual modelling for design of a network management system through the use of formal modelling tools, thus allowing from the definition of processes to identify those responsible for these. Finally we will propose a use case to design a conceptual model intrusion detection system in network.This work was performed as part of the Smart University Project financed by the University of Alicante

    Conceptual Modelling of Complex Network Management Systems

    Get PDF
    Society, as we know it today, is completely dependent on computer networks, Internet and distributed systems, which place at our disposal the necessary services to perform our daily tasks. Moreover, and unconsciously, all services and distributed systems require network management systems. These systems allow us to, in general, maintain, manage, configure, scale, adapt, modify, edit, protect or improve the main distributed systems. Their role is secondary and is unknown and transparent to the users. They provide the necessary support to maintain the distributed systems whose services we use every day. If we don’t consider network management systems during the development stage of main distributed systems, then there could be serious consequences or even total failures in the development of the distributed systems. It is necessary, therefore, to consider the management of the systems within the design of distributed systems and systematize their conception to minimize the impact of the management of networks within the project of distributed systems. In this paper, we present a formalization method of the conceptual modelling for design of a network management system through the use of formal modelling tools, thus allowing from the definition of processes to identify those responsible for these. Finally we will propose a use case to design a conceptual model intrusion detection system in network.This work was performed as part of the Smart University Project financed by the University of Alicante

    Stringent Response and AggR-Dependent virulence regulation in the enteroaggregative Escherichia coli Strain 042.

    Get PDF
    Virulence expression in the enteroaggregative Escherichia coli strain 042 requires the transcriptional activator AggR. We show in this report that, as reported for other virulence factors, the nucleotide second messenger (p)ppGpp is needed for a high expression level of AggR. As expected from these findings, expression of AggR-activated genes such as the AafA pilin subunit is downregulated in the absence of (p)ppGpp. Considering the fact that biofilm formation in strain 042 requires the AafA protein, biofilm development in strain 042 is impaired in derivatives that lack either the AggR protein, the virulence plasmid that encodes AggR (pAA2) or the ability to synthesize (p)ppGpp. These results show a direct correlation between (p)ppGpp, expression of AggR and biofilm development in strain 042

    Overexpression of the third H-NS paralogue H-NS2 compensates fitness loss in hns mutants of the enteroaggregative Escherichia coli strain 042

    Get PDF
    Members of the H-NS protein family play a role both in the chromosome architecture and in the regulation of gene expression in bacteria. The genomes of the enterobacteria encode an H-NS paralogue, the StpA protein. StpA displays specific regulatory properties and provides a molecular backup for H-NS. Some enterobacteria also encode third H-NS paralogues. This is the case of the enteroaggregative E. coli (EAEC) strain 042, which encodes the hns, stpA and hns2 genes. We provide in this paper novel information about the role of the H-NS2 protein in strain 042. A C > T transition in the hns2 promoter leading to increased H-NS2 expression is readily selected in hns mutants. Increased H-NS2 expression partially compensates for H-NS loss. H-NS2 levels are critical for the strain 042 fitness. Under some circumstances, high H-NS2 expression levels dictated by the mutant hns2 promoter can be deleterious. The selection of T > C revertants or of clones harboring insertional inactivations of the hns2 gene can then occur. Temperature also plays a relevant role in the H-NS2 regulatory activity. At 37 °C, H-NS2 targets a subset of the H-NS repressed genes contributing to their silencing. When temperature drops to 25 °C, the repressory ability of H-NS2 is significantly reduced. At low temperature, H-NS plays the main repressory role

    Gene Duplications in the Genomes of Staphylococci and Enterococci

    Get PDF
    Gene duplications are a feature of bacterial genomes. In the present work we analyze the extent of gene duplications in the genomes of three microorganisms that belong to the Firmicutes phylum and that are etiologic agents of several nosocomial infections: Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis. In all three groups, there is an irregular distribution of duplications in the genomes of the strains analyzed. Whereas in some of the strains duplications are scarce, hundreds of duplications are present in others. In all three species, mobile DNA accounts for a large percentage of the duplicated genes: phage DNA in S. aureus, and plasmid DNA in the enterococci. Duplicates also include core genes. In all three species, a reduced group of genes is duplicated in all strains analyzed. Duplication of the deoC and rpmG genes is a hallmark of S. aureus genomes. Duplication of the gene encoding the PTS IIB subunit is detected in all enterococci genomes. In E. faecalis it is remarkable that the genomes of some strains encode duplicates of the prgB and prgU genes. They belong to the prgABCU cluster, which responds to the presence of the peptide pheromone cCF10 by expressing the surface adhesins PrgA, PrgB, and PrgC

    Roles of Proteins Containing Immunoglobulin-Like Domains in the Conjugation of Bacterial Plasmids

    Get PDF
    Transmission of a plasmid from one bacterial cell to another, in several instances, underlies the dissemination of antimicrobial resistance (AMR) genes. The process requires well-characterized enzymatic machinery that facilitates cell-to-cell contact and the transfer of the plasmid

    Gene duplications in the E. coli genome: common themes among pathotypes

    Get PDF
    Background: Gene duplication underlies a significant proportion of gene functional diversity and genome complexity in both eukaryotes and prokaryotes. Although several reports in the literature described the duplication of specific genes in E. coli, a detailed analysis of the extent of gene duplications in this microorganism is needed. Results: The genomes of the E. coli enteroaggregative strain 042 and other pathogenic strains contain duplications of the gene that codes for the global regulator Hha. To determine whether the presence of additional copies of the hha gene correlates with the presence of other genes, we performed a comparative genomic analysis between E. coli strains with and without hha duplications. The results showed that strains harboring additional copies of the hha gene also encode the yeeR irmA (aec69) gene cluster, which, in turn, is also duplicated in strain 042 and several other strains. The identification of these duplications prompted us to obtain a global map of gene duplications, first in strain 042 and later in other E. coli genomes. Duplications in the genomes of the enteroaggregative strain 042, the uropathogenic strain CFT073 and the enterohemorrhagic strain O145:H28 have been identified by a BLASTp protein similarity search. This algorithm was also used to evaluate the distribution of the identified duplicates among the genomes of a set of 28 representative E. coli strains. Despite the high genomic diversity of E. coli strains, we identified several duplicates in the genomes of almost all studied pathogenic strains. Most duplicated genes have no known function. Transcriptomic analysis also showed that most of these duplications are regulated by the H-NS/Hha proteins. Conclusions: Several duplicated genes are widely distributed among pathogenic E. coli strains. In addition, some duplicated genes are present only in specific pathotypes, and others are strain specific. This gene duplication analysis shows novel relationships between E. coli pathotypes and suggests that newly identified genes that are duplicated in a high percentage of pathogenic E. coli isolates may play a role in virulence. Our study also shows a relationship between the duplication of genes encoding regulators and genes encoding their targets

    Genetic parameter estimations of new traits of morphological quality on gilthead seabream (Sparus aurata) by using IMAFISH_ML software

    Get PDF
    © 2021 The Authors.In this study, a total of 18 novel productive traits, three related to carcass [cNiT] and fifteen related to morphometric [mNiT]), were measured in gilthead seabream (Sparus aurata) using Non-invasive Technologies (NiT) as implemented in IMAFISH_ML (MatLab script). Their potential to be used in industrial breeding programs were evaluated in 2348 offspring reared under different production systems (estuarine ponds, oceanic cage, inland tank) at harvest. All animals were photographed, and digitally measured and main genetic parameters were estimated. Heritability for growth traits was medium (0.25–0.37) whereas for NiT traits medium-high (0.24–0.61). In general, genetic correlations between mNiT, cNiT and growth and traits were high and positive. Image analysis artifacts such as fin unfold or shades, that may interfere in the precision of some digital measurements, were discarded as a major bias factor since heritability of NiT traits after correcting them were no significantly different from original ones. Indirect selection of growth traits through NiT traits produced a better predicted response than directly measuring Body Weight (13–23%), demonstrating that this methodological approach is highly cost-effective in terms of accuracy and data processing time.This study was funded from the European Maritime and Fisheries Fund (EMFF) by Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente (MAPAMA), framed in PROGENSA-II III project (Mejora de la Competitividad del Sector de la Dorada a Través de la Selección Genética, programa JACUMAR)

    Expression of a novel class of bacterial Ig-like proteins is required for IncHI plasmid conjugation

    Get PDF
    Antimicrobial resistance (AMR) is currently one of the most important challenges to the treatment of bacterial infections. A critical issue to combat AMR is to restrict its spread. In several instances, bacterial plasmids are involved in the global spread of AMR. Plasmids belonging to the incompatibility group (Inc)HI are widespread in Enterobacteriaceae and most of them express multiple antibiotic resistance determinants. They play a relevant role in the recent spread of colistin resistance. We present in this report novel findings regarding IncHI plasmid conjugation. Conjugative transfer in liquid medium of an IncHI plasmid requires expression of a plasmid-encoded, large-molecular-mass protein that contains an Ig-like domain. The protein, termed RSP, is encoded by a gene (ORF R0009) that maps in the Tra2 region of the IncHI1 R27 plasmid. The RSP protein is exported outside the cell by using the plasmid-encoded type IV secretion system that is also used for its transmission to new cells. Expression of the protein reduces cell motility and enables plasmid conjugation. Flagella are one of the cellular targets of the RSP protein. The RSP protein is required for a high rate of plasmid transfer in both flagellated and nonflagellated Salmonella cells. This effect suggests that RSP interacts with other cellular structures as well as with flagella. These unidentified interactions must facilitate mating pair formation and, hence, facilitate IncHI plasmid conjugation. Due to its location on the outer surfaces of the bacterial cell, targeting the RSP protein could be a means of controlling IncHI plasmid conjugation in natural environments or of combatting infections caused by AMR enterobacteria that harbor IncHI plasmids
    corecore