109 research outputs found

    La nueva moda de la dieta sin gluten. Beneficios, riesgos y falsos mitos

    Get PDF
    La dieta sin gluten (DSG) surgió como el mejor tratamiento dietético para la enfermedad celiaca (EC). En la actualidad, ha aumentado significativamente tanto el consumo de alimentos sin gluten, como el número de seguidores de este tipo de dieta entre la población sana. Este aumento ha estado influenciado por los relatos de personajes famosos, las noticias,o internet, al promocionar unos supuestos beneficios sobre la salud al seguir una DSG,que no cuentan con ningún tipo de evidencia científica que los respalde. Para evaluar los riesgos y beneficios de la DSG,así como desmentir los falsos mitos actualmente asumidos por la sociedad, y hacer una estimación del impacto económico y social de este tipo de dieta, se ha realizado una revisión sistemática con búsqueda bibliográfica en bases de datos, revistas científicas,y páginas web, de artículos publicados en los últimos 20 años. Se ha incluido un total de 31 trabajos, cuya revisión ha evidenciado que los principales beneficios de la DSG tienen lugar exclusivamente sobre la EC, la dermatitis herpetiforme, la ataxia por gluten y la sensibilidad al trigo no celiaca causada por la ingesta de gluten. En cambio, los riesgos derivados de la DSG, caracterizados por el desarrollo de desequilibrios nutricionales (por exceso o por defecto),y cierta toxicidad causada por la ingesta frecuente de determinados alimentos sustitutos del gluten, se manifiestan sobre cualquier población sana o enferma que siga este tipo de dieta. Al mismo tiempo, gracias a la revisión exhaustiva de los trabajos, y en contra de las falsas creencias que han enfocado unos supuestos beneficios de la DSG en población sana, se ha demostrado que la exclusión del gluten no tiene ningún efecto beneficioso en la prevención de patologías cardiovasculares, en la mejora del rendimiento y composición corporal de los atletas, en la prevención del desarrollo de EC en niños o familiares de primer grado en riesgo de padecer la enfermedad, ni como patrón dietético efectivo para la pérdida de peso. En los casos de supuestas intolerancias al gluten, es necesario que antes de iniciar una DSG se verifique que la sintomatología es causada por la ingesta de gluten y no por la ingesta de FODMAPs, como ocurre en la mayoría de los casos. Por último, es importante remarcar el hecho de que la DSG no solo tiene efectos sobre la salud, sino que también está teniendo un fuerte impacto a nivel económico, psicológico y social sobre la población a nivel mundial.Grado en Nutrición Humana y Dietétic

    Current ozone levels threaten gross primary production and yield of Mediterranean annual pastures and nitrogen modulates the response

    Full text link
    Pastures are among the most important ecosystems in Europe considering their biodiversity and dis- tribution area. However, their response to increasing tropospheric ozone (O 3 ) and nitrogen (N) deposi- tion, two of the main drivers of global change, is still uncertain. A new Open-Top Chamber (OTC) experiment was performed in central Spain, aiming to study annual pasture response to O 3 and N in close to natural growing conditions. A mixture of six species of three representative families was sowed in the fi eld. Plants were exposed for 40 days to four O 3 treatments: fi ltered air, non- fi ltered air (NFA) repro- ducing ambient levels and NFA supplemented with 20 and 40 nl l � 1 O 3 . Three N treatments were considered to reach the N integrated doses of “ background ” , þ 20 or þ 40 kg N ha � 1 . Ozone signi fi cantly reduced green and total aboveground biomass (maximum reduction 25%) and increased the senescent biomass (maximum increase 40%). Accordingly, O 3 decreased community Gross Primary Production due to both a global reduction of ecosystem CO 2 exchange and an increase of ecosystem respiration. Nitrogen could partially counterbalance O 3 effects on aboveground biomass when the levels of O 3 were moderate, but at the same time O 3 exposure reduced the fertilization effect of higher N availability. Therefore, O 3 must be considered as a stress factor for annual pastures in the Mediterranean areas

    https://doi.org/10.1016/j.chemosphere.2023.140364

    Full text link
    The fate of the antibiotic sulfamethoxazole in amended soils remains unclear, moreover in basic soils. This work aimed to assess the adsorption, leaching, and biodegradation of sulfamethoxazole in unamended and biochar from holm oak pruning (BC)- and green compost from urban pruning (CG)-amended basic soil. Adsorption properties of the organic amendments and soil were determined by adsorption isotherms of sulfamethoxazole. The leachability of this antibiotic from unamended (Soil) and BC- (Soil + BC) and GC- (Soil + GC) amended soil was determined by leaching columns using water as solvent up to 250 mL. Finally, Soil, Soil + BC, and Soil + GC were spiked with sulfamethoxazole and incubated for 42 days. The degradation rate and microbial activity were periodically monitored. Adsorption isotherms showed poor adsorption of sulfamethoxazole in unamended basic soil. BC and CG showed good adsorption capacity. Soil + BC and Soil + GC increased the sulfamethoxazole adsorption capacity of the soil. The low sulfamethoxazole adsorption of Soil produced quick and intense sulfamethoxazole leaching. Soil + BC reduced the sulfamethoxazole leaching, unlike to Soil + GC which enhanced it concerning Soil. The pH of adsorption isotherms and leachates indicate that the anion of sulfamethoxazole was the major specie in unamended and amended soil. CG enhanced the microbial activity of the soil and promoted the degradability of sulfamethoxazole. In contrast, the high adsorption and low biostimulation effect of BC in soil reduced the degradation of sulfamethoxazole. The half-life of sulfamethoxazole was 2.6, 6.9, and 11.9 days for Soil + GC, Soil, and Soil + BC, respectively. This work shows the benefits and risks of two organic amendments, BC and GC, for the environmental fate of sulfamethoxazole. The different nature of the organic carbon of the amendments was responsible for the different effects on the soilPDC 2021-120744-I0

    Circulating extracellular vesicle proteins and microRNA profiles in subcortical and cortical-subcortical ischaemic stroke

    Full text link
    In order to investigate the role of circulating extracellular vesicles (EVs), proteins, and microRNAs as damage and repair markers in ischaemic stroke depending on its topography, subcor-tical (SC), and cortical-subcortical (CSC) involvement, we quantified the total amount of EVs using an enzyme-linked immunosorbent assay technique and analysed their global protein content using proteomics. We also employed a polymerase chain reaction to evaluate the circulating microRNA profile. The study included 81 patients with ischaemic stroke (26 SC and 55 CSC) and 22 healthy controls (HCs). No differences were found in circulating EV levels between the SC, CSC, and HC groups. We detected the specific expression of C1QA and Casp14 in the EVs of patients with CSC ischaemic stroke and the specific expression of ANXA2 in the EVs of patients with SC involvement. Patients with CSC ischaemic stroke showed a lower expression of miR-15a, miR-424, miR-100, and miR-339 compared with those with SC ischaemic stroke, and the levels of miR-339, miR-100, miR-199a, miR-369a, miR-424, and miR-15a were lower than those of the HCs. Circulating EV proteins and microRNAs from patients with CSC ischaemic stroke could be considered markers of neurite outgrowth, neurogenesis, inflammation process, and atherosclerosis. On the other hand, EV proteins and microRNAs from patients with SC ischaemic stroke might be markers of an anti-inflammatory process and blood–brain barrier disruption reduction.This work was sponsored by a grant from Miguel Servet (CP15/00069; CPII20/00002 to María Gutiérrez-Fernández), Miguel Servet (CP20/00024 to Laura Otero-Ortega), a predoctoral fellowship (FI17/00188 to Mari Carmen Gómez-de Frutos; FI18/00026 to Fernando Laso-García), a Sara Borrell postdoctoral fellowship (CD19/00033 to María Pérez-Mato), a Río Hortega (CM20/00047 to Elisa Alonso-López) and the INVICTUS PLUS network grant (RD16/0019/0005) from the Carlos III Health Institute Health Care Research Fund and was co-funded by the European Regional Development Fund (ERDF)

    Similarities and differences in extracellular vesicle profiles between ischaemic stroke and myocardial infarction

    Full text link
    Extracellular vesicles (EVs) are involved in intercellular signalling through the transfer of molecules during physiological and pathological conditions, such as ischaemic disease. EVs might therefore play a role in ischaemic stroke (IS) and myocardial infarction (MI). In the present study, we analysed the similarities and differences in the content of circulating EVs in patients with IS and MI. This prospective observational study enrolled 140 participants (81 patients with IS, 37 with MI and 22 healthy controls [HCs]). We analysed the protein and microRNA content from EVs using proteomics and reverse transcription quantitative real-time polymerase chain reaction and compared it between the groups. In the patients with IS and MI, we identified 14 common proteins. When comparing IS and MI, we found differences in the protein profiles (apolipoprotein B, alpha-2-macroglobulin, fibronectin). We also found lower levels of miR-340 and miR-424 and higher levels of miR-29b in the patients with IS and MI compared with the HCs. Lastly, we found higher miR-340 levels in IS than in MI. In conclusion, proteomic and miRNA analyses suggest a relationship between circulating EV content and the patient’s disease state. Although IS and MI affect different organs (brain and heart) with distinct histological characteristics, certain EV proteins and miRNAs appear to participate in both diseases, while others are present only in patients with ISThis work was sponsored by a grant from Miguel Servet (CP15/00069 to María Gutiérrez- Fernández), a predoctoral fellowship (FI17/00188 to Mari Carmen Gómez-de Frutos;FI18/00026 to Fernando Laso-García), a Sara Borrell postdoctoral fellowship (CD19/00033 to María Pérez-Mato), the INVICTUS PLUS network grant (RD16/0019/0005) from the Carlos III Health Institute Health Care Research Fund and was co-funded by the European Regional Development Fund (ERDF) and Juan de la Cierva postdoctoral fellowship (IJCI-2017-33505 to Laura Otero-Ortega, Spanish State Research Agency) and the Spanish Ministry of Science and Innovatio

    Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells

    Get PDF
    © The Author(s) 2020Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7–9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies.We acknowledge and thank Dr. Nuria Malats and Jaime Villarreal from the Spanish National Cancer Research Center (CNIO) for RNA sequencing and analysis, funded by Fondo de Investigaciones Sanitarias (FIS) grant PI18/01347. We thank Patricia Sánchez-Tomero and Marina Ochando-Garmendia for technical assistance and support and Dr. Raúl Sánchez Lanzas for assistance with autophagy experiments. We want to particularly acknowledge the patients and the BioBank Hospital Ramón y Cajal-IRYCIS (PT13/0010/0002) integrated in the Spanish National Biobanks Network for its collaboration and, in particular, Adrián Povo Retana for macrophage isolation. We would also like to thank the Transmission Electron Microscopy Unit Laboratory, part of the UAM Interdepartmental Investigation Service (SIdI); Coral Pedrero for exceptional help with in vivo experiments; and the laboratories of Dr. Amparo Cano and Dr. José González Castaño for reagents and helpful discussions. S.V. was a recipient of an Ayuda de Movilidad del Personal Investigador del IRYCIS, a mobility grant from the Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain, and a pre-doctoral fellowship from the Comunidad de Madrid, Ayudas Para La Contratación De Investigadores Predoctorales Y Posdoctorales (PEJD-2017-PRE/BMD-5062), Madrid, Spain. This study was supported by a Rámon y Cajal Merit Award (RYC-2012-12104) from the Ministerio de Economía y Competitividad, Spain (to B.S.); funding from la Beca Carmen Delgado/Miguel Pérez-Mateo from AESPANC-ACANPAN Spain (to B.S.); a Conquer Cancer Now Grant from the Concern Foundation (Los Angeles, CA, USA) (to B.S.); a Coordinated grant (GC16173694BARB) from the Fundación Asociación Española Contra el Cáncer (AECC) (to B.S.); FIS grants PI18/00757 (to B.S.), PI16/00789 (to M.A.F.-M.), PI18/00267 (to L.G.-B.; co-financed through Fondo Europeo de Desarrollo Regional (FEDER) “Una manera de hacer Europa”); a Miguel Servet award (CP16/00121) (to P.S.); a Max Eder Fellowship of the German Cancer Aid (111746) (to P.C.H.); and the German Research Foundation (DFG, CRC 1279 “Exploiting the human peptidome for Novel Antimicrobial and Anticancer Agents”; to P.C.H.)

    Bioaccumulation of titanium dioxide nanoparticles in green (Ulva sp.) and red (Palmaria palmata) seaweed

    Get PDF
    A bioaccumulation study in red (Palmaria palmata) and green (Ulva sp.) seaweed has been carried out after exposure to different concentrations of citrate-coated titanium dioxide nanoparticles (5 and 25 nm) for 28 days. The concentration of total titanium and the number and size of accumulated nanoparticles in the seaweeds has been determined throughout the study by inductively coupled plasma mass spectrometry (ICP-MS) and single particle-ICP-MS (SP-ICP-MS), respectively. Ammonia was used as a reaction gas to minimize the effect of the interferences in the 48Ti determination by ICP-MS. Titanium concentrations measured in Ulva sp. were higher than those found in Palmaria palmata for the same exposure conditions. The maximum concentration of titanium (61.96 ± 15.49 μg g−1) was found in Ulva sp. after 28 days of exposure to 1.0 mg L−1 of 5 nm TiO2NPs. The concentration and sizes of TiO2NPs determined by SP-ICP-MS in alkaline seaweed extracts were similar for both seaweeds exposed to 5 and 25 nm TiO2NPs, which indicates that probably the element is accumulated in Ulva sp. mainly as ionic titanium or nanoparticles smaller than the limit of detection in size (27 nm). The implementation of TiO2NPs in Ulva sp. was confirmed by electron microscopy (TEM/STEM) in combination with energy dispersive X-Ray analysis (EDX)The authors wish to thank the fnancial support of Ministerio de Economía y Competitividad (project INNOVANANO, reference RT2018-099222-B-100), European Union (INTERREG Atlantic Area, project NANOCULTURE, reference EAPA590/2018), and Xunta de Galicia (Grupo de Referencia Competitiva, grant number ED431C 2022/29)S

    Predicting sudden cardiac death in adults with congenital heart disease

    Get PDF
    [Objectives] To develop, calibrate, test and validate a logistic regression model for accurate risk prediction of sudden cardiac death (SCD) and non-fatal sudden cardiac arrest (SCA) in adults with congenital heart disease (ACHD), based on baseline lesion-specific risk stratification and individual’s characteristics, to guide primary prevention strategies.[Methods] We combined data from a single-centre cohort of 3311 consecutive ACHD patients (50% male) at 25-year follow-up with 71 events (53 SCD and 18 non-fatal SCA) and a multicentre case–control group with 207 cases (110 SCD and 97 non-fatal SCA) and 2287 consecutive controls (50% males). Cumulative incidences of events up to 20 years for specific lesions were determined in the prospective cohort. Risk model and its 5-year risk predictions were derived by logistic regression modelling, using separate development (18 centres: 144 cases and 1501 controls) and validation (two centres: 63 cases and 786 controls) datasets.[Results] According to the combined SCD/SCA cumulative 20 years incidence, a lesion-specific stratification into four clusters—very-low (12%)—was built. Multivariable predictors were lesion-specific cluster, young age, male sex, unexplained syncope, ischaemic heart disease, non-life threatening ventricular arrhythmias, QRS duration and ventricular systolic dysfunction or hypertrophy. The model very accurately discriminated (C-index 0.91; 95% CI 0.88 to 0.94) and calibrated (p=0.3 for observed vs expected proportions) in the validation dataset. Compared with current guidelines approach, sensitivity increases 29% with less than 1% change in specificity.[Conclusions] Predicting the risk of SCD/SCA in ACHD can be significantly improved using a baseline lesion-specific stratification and simple clinical variables.Peer reviewe

    CRISPR/Cas9-generated models uncover therapeutic vulnerabilities of del(11q) CLL cells to dual BCR and PARP inhibition

    Get PDF
    [EN]The deletion of 11q (del(11q)) invariably comprises ATM gene in chronic lymphocytic leukemia (CLL). Concomitant mutations in this gene in the remaining allele have been identified in 1/3 of CLL cases harboring del(11q), being the biallelic loss of ATM associated with adverse prognosis. Although the introduction of targeted BCR inhibition has significantly favored the outcomes of del(11q) patients, responses of patients harboring ATM functional loss through biallelic inactivation are unexplored, and the development of resistances to targeted therapies have been increasingly reported, urging the need to explore novel therapeutic approaches. Here, we generated isogenic CLL cell lines harboring del(11q) and ATM mutations through CRISPR/Cas9-based gene-editing. With these models, we uncovered a novel therapeutic vulnerability of del(11q)/ATM-mutated cells to dual BCR and PARP inhibition. Ex vivo studies in the presence of stromal stimulation on 38 CLL primary samples confirmed a synergistic action of the combination of olaparib and ibrutinib in del(11q)/ATM-mutated CLL patients. In addition, we showed that ibrutinib produced a homologous recombination repair impairment through RAD51 dysregulation, finding a synergistic link of both drugs in the DNA damage repair pathway. Our data provide a preclinical rationale for the use of this combination in CLL patients with this high-risk cytogenetic abnormality

    Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma

    Get PDF
    [Objective]: The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models.[Design]: Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation.[Results]: Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment.[Conclusion]: Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.JCL-G received support from a 'la Caixa' Foundation (ID 100010434) fellowship (LCF/BQ/DR21/11880011). This study was supported by ISCIII FIS grants PI18/00757 and PI21/01110 (BSJ) and PI18/00267 (LG-B), and grants from the Spanish Ministry of Economy and Innovation SAF2016-76504-R (ACan and FP), PID2019-111052RB-I00 (FP), PID2019-104644RB-I00 (GM-B), a Ramón y Cajal Merit Award RYC-2012–12104 (BSJ) and ISCIII, CIBERONC, CB16/12/00446 (ACar) and CB16/12/00295 (ACan and GM-B), all of them co-financed through Fondo Europeo de Desarrollo Regional (FEDER) 'Una manera de hacer Europa'; a Fero Foundation Grant (BSJ); a Coordinated grant (GC16173694BARB) from the Fundación Científica Asociación Española Contra el Cáncer (FC-AECC) (BSJ); a Miguel Servet award (CP16/00121) (PS); a DFG, German Research Foundation Grant—Project no: 492 436 553 (KG); and a Max Eder Fellowship of the German Cancer Aid (111746) (PCH
    corecore