1,191 research outputs found
Molecular Gas in Spiral Galaxies
In this review, I highlight a number of recent surveys of molecular gas in
nearby spiral galaxies. Through such surveys, more complete observations of the
distribution and kinematics of molecular gas have become available for galaxies
with a wider range of properties (e.g., brightness, Hubble type, strength of
spiral or bar structure). These studies show the promise of both
interferometers and single-dish telescopes in advancing our general
understanding of molecular gas in spiral galaxies. In particular, I highlight
the contributions of the recent BIMA Survey of Nearby Galaxies (SONG).Comment: 8 pages, 1 figure. To appear in the proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium, "The Dense Interstellar Medium in Galaxies",
which was held in Zermatt, Switzerland in September 200
Information transmission in oscillatory neural activity
Periodic neural activity not locked to the stimulus or to motor responses is
usually ignored. Here, we present new tools for modeling and quantifying the
information transmission based on periodic neural activity that occurs with
quasi-random phase relative to the stimulus. We propose a model to reproduce
characteristic features of oscillatory spike trains, such as histograms of
inter-spike intervals and phase locking of spikes to an oscillatory influence.
The proposed model is based on an inhomogeneous Gamma process governed by a
density function that is a product of the usual stimulus-dependent rate and a
quasi-periodic function. Further, we present an analysis method generalizing
the direct method (Rieke et al, 1999; Brenner et al, 2000) to assess the
information content in such data. We demonstrate these tools on recordings from
relay cells in the lateral geniculate nucleus of the cat.Comment: 18 pages, 8 figures, to appear in Biological Cybernetic
Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.
Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
Matrix theory origins of non-geometric fluxes
We explore the origins of non-geometric fluxes within the context of M theory
described as a matrix model. Building upon compactifications of Matrix theory
on non-commutative tori and twisted tori, we formulate the conditions which
describe compactifications with non-geometric fluxes. These turn out to be
related to certain deformations of tori with non-commutative and
non-associative structures on their phase space. Quantization of flux appears
as a natural consequence of the framework and leads to the resolution of
non-associativity at the level of the unitary operators. The quantum-mechanical
nature of the model bestows an important role on the phase space. In
particular, the geometric and non-geometric fluxes exchange their properties
when going from position space to momentum space thus providing a duality among
the two. Moreover, the operations which connect solutions with different fluxes
are described and their relation to T-duality is discussed. Finally, we provide
some insights on the effective gauge theories obtained from these matrix
compactifications.Comment: 1+31 pages, reference list update
Copper-catalysed selective hydroamination reactions of alkynes
The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine.National Institutes of Health (U.S.) (GM58160
Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding
NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe–4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe–4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove
Dopamine neurons modulate neural encoding and expression of depression-related behaviour
Major depression is characterized by diverse debilitating symptoms that include hopelessness and anhedonia1. Dopamine neurons involved in reward and motivation are among many neural populations that have been hypothesized to be relevant, and certain antidepressant treatments, including medications and brain stimulation therapies, can influence the complex dopamine system. Until now it has not been possible to test this hypothesis directly, even in animal models, as existing therapeutic interventions are unable to specifically target dopamine neurons. Here we investigated directly the causal contributions of defined dopamine neurons to multidimensional depression-like phenotypes induced by chronic mild stress, by integrating behavioural, pharmacological, optogenetic and electrophysiological methods in freely moving rodents. We found that bidirectional control (inhibition or excitation) of specified midbrain dopamine neurons immediately and bidirectionally modulates (induces or relieves) multiple independent depression symptoms caused by chronic stress. By probing the circuit implementation of these effects, we observed that optogenetic recruitment of these dopamine neurons potently alters the neural encoding of depression-related behaviours in the downstream nucleus accumbens of freely moving rodents, suggesting that processes affecting depression symptoms may involve alterations in the neural encoding of action in limbic circuitry
Cytosolic 5'-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response.
International audienceBACKGROUND: Double stranded RNA (dsRNA) is widely accepted as an RNA motif recognized as a danger signal by the cellular sentries. However, the biology of non-segmented negative strand RNA viruses, or Mononegavirales, is hardly compatible with the production of such dsRNA. METHODOLOGY AND PRINCIPAL FINDINGS: During measles virus infection, the IFN-beta gene transcription was found to be paralleled by the virus transcription, but not by the virus replication. Since the expression of every individual viral mRNA failed to activate the IFN-beta gene, we postulated the involvement of the leader RNA, which is a small not capped and not polyadenylated RNA firstly transcribed by Mononegavirales. The measles virus leader RNA, synthesized both in vitro and in vivo, was efficient in inducing the IFN-beta expression, provided that it was delivered into the cytosol as a 5'-trisphosphate ended RNA. The use of a human cell line expressing a debilitated RIG-I molecule, together with overexpression studies of wild type RIG-I, showed that the IFN-beta induction by virus infection or by leader RNA required RIG-I to be functional. RIG-I binds to leader RNA independently from being 5-trisphosphate ended; while a point mutant, Q299A, predicted to establish contacts with the RNA, fails to bind to leader RNA. Since the 5'-triphosphate is required for optimal RIG-I activation but not for leader RNA binding, our data support that RIG-I is activated upon recognition of the 5'-triphosphate RNA end. CONCLUSIONS/SIGNIFICANCE: RIG-I is proposed to recognize Mononegavirales transcription, which occurs in the cytosol, while scanning cytosolic RNAs, and to trigger an IFN response when encountering a free 5'-triphosphate RNA resulting from a mislocated transcription activity, which is therefore considered as the hallmark of a foreign invader
Binding Modes of Peptidomimetics Designed to Inhibit STAT3
STAT3 is a transcription factor that has been found to be constitutively activated in a number of human cancers.
Dimerization of STAT3 via its SH2 domain and the subsequent translocation of the dimer to the nucleus leads to
transcription of anti-apoptotic genes. Prevention of the dimerization is thus an attractive strategy for inhibiting the activity
of STAT3. Phosphotyrosine-based peptidomimetic inhibitors, which mimic pTyr-Xaa-Yaa-Gln motif and have strong to weak
binding affinities, have been previously investigated. It is well-known that structures of protein-inhibitor complexes are
important for understanding the binding interactions and designing stronger inhibitors. Experimental structures of
inhibitors bound to the SH2 domain of STAT3 are, however, unavailable. In this paper we describe a computational study
that combined molecular docking and molecular dynamics to model structures of 12 peptidomimetic inhibitors bound to
the SH2 domain of STAT3. A detailed analysis of the modeled structures was performed to evaluate the characteristics of the
binding interactions. We also estimated the binding affinities of the inhibitors by combining MMPB/GBSA-based energies
and entropic cost of binding. The estimated affinities correlate strongly with the experimentally obtained affinities.
Modeling results show binding modes that are consistent with limited previous modeling studies on binding interactions
involving the SH2 domain and phosphotyrosine(pTyr)-based inhibitors. We also discovered a stable novel binding mode
that involves deformation of two loops of the SH2 domain that subsequently bury the C-terminal end of one of the stronger
inhibitors. The novel binding mode could prove useful for developing more potent inhibitors aimed at preventing
dimerization of cancer target protein STAT3
- …
