5,068 research outputs found

    The Effect of Terrain-Depicting Primary-Flight-Display Backgrounds and Guidance Cues on Pilot Recoveries from Unknown Attitudes

    Get PDF
    A study was conducted to evaluate the effects of primary flight display (PFD) terrain depictions on pilots’ performance of recoveries from unknown attitudes. Forty pilots participated in the study, each group of eight using a different display format. The five conditions consisted of combinations of terrain depiction (none, full-color terrain, brown terrain) and guidance indications (pitch and roll arrows). Participants flew baseline trials in the Advanced General Aviation Research Simulator using a common electronic attitude indicator and then performed recoveries from unknown attitudes (UARs) using one of the PFD formats. Performance measures included initial response time, total recovery time, primary reversals, and secondary reversals. No significant effects of the primary independent variables were found on any of the performance measures. Posttest interviews indicated the participants preferred the directional-arrow indicators and had no preference for or against the presence of terrain depictions during UARs, focusing primarily on the zero-pitch line as a reference. It was concluded that the specific terrain representations examined did not pose a hazard to the identification of and recovery from unknown attitudes as long as a zeropitch line of sufficient discriminability (contrast and size) to all backgrounds was present

    Impacts of an extreme cyclone event on landscape-scale savanna fire, productivity and greenhouse gas emissions

    Get PDF
    North Australian tropical savanna accounts for 12% of the world\u27s total savanna land cover. Accordingly, understanding processes that govern carbon, water and energy exchange within this biome is critical to global carbon and water budgeting. Climate and disturbances drive ecosystem carbon dynamics. Savanna ecosystems of the coastal and sub-coastal of north Australia experience a unique combination of climatic extremes and are in a state of near constant disturbance from fire events (1 in 3 years), storms resulting in windthrow (1 in 5–10 years) and mega-cyclones (1 in 500–1000 years). Critically, these disturbances occur over large areas creating a spatial and temporal mosaic of carbon sources and sinks. We quantify the impact on gross primary productivity (GPP) and fire occurrence from a tropical mega-cyclone, tropical Cyclone Monica (TC Monica), which affected 10 400 km2 of savanna across north Australia, resulting in the mortality and severe structural damage to ~140 million trees. We estimate a net carbon equivalent emission of 43 Tg of CO2-e using the moderate resolution imaging spectroradiometer (MODIS) GPP (MOD17A2) to quantify spatial and temporal patterns pre- and post-TC Monica. GPP was suppressed for four years after the event, equivalent to a loss of GPP of 0.5 Tg C over this period. On-ground fuel loads were estimated to potentially release 51.2 Mt CO2-e, equivalent to ~10% of Australia\u27s accountable greenhouse gas emissions. We present a simple carbon balance to examine the relative importance of frequency versus impact for a number of key disturbance processes such as fire, termite consumption and intense but infrequent mega-cyclones. Our estimates suggested that fire and termite consumption had a larger impact on Net Biome Productivity than infrequent mega-cyclones. We demonstrate the importance of understanding how climate variability and disturbance impacts savanna dynamics in the context of the increasing interest in using savanna landscapes for enhanced carbon sinks in emission offset schemes

    Memory usage verification using Hip/Sleek.

    Get PDF
    Embedded systems often come with constrained memory footprints. It is therefore essential to ensure that software running on such platforms fulfils memory usage specifications at compile-time, to prevent memory-related software failure after deployment. Previous proposals on memory usage verification are not satisfactory as they usually can only handle restricted subsets of programs, especially when shared mutable data structures are involved. In this paper, we propose a simple but novel solution. We instrument programs with explicit memory operations so that memory usage verification can be done along with the verification of other properties, using an automated verification system Hip/Sleek developed recently by Chin et al.[10,19]. The instrumentation can be done automatically and is proven sound with respect to an underlying semantics. One immediate benefit is that we do not need to develop from scratch a specific system for memory usage verification. Another benefit is that we can verify more programs, especially those involving shared mutable data structures, which previous systems failed to handle, as evidenced by our experimental results

    Roughness analysis applied to niobium thin films grown on MgO(001) surfaces for superconducting radio frequency cavity applications

    Get PDF
    This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of similar to 50 MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings. DOI: 10.1103/PhysRevSTAB.16.02200

    Constrained analytical interrelations in neutrino mixing

    Full text link
    Hermitian squared mass matrices of charged leptons and light neutrinos in the flavor basis are studied under general additive lowest order perturbations away from the tribimaximal (TBM) limit in which a weak basis with mass diagonal charged leptons is chosen. Simple analytical expressions are found for the three measurable TBM-deviants in terms of perturbation parameters appearing in the neutrino and charged lepton eigenstates in the flavor basis. Taking unnatural cancellations to be absent and charged lepton perturbation parameters to be small, interrelations are derived among masses, mixing angles and the amount of CP-violation.Comment: To be published in the Springer Proceedings in the Physics Series under the heading of the XXI DAE-BRNS Symposium (Guwahati, India

    Polarized semi-inclusive electroweak structure functions at next-to-leading-order

    Get PDF
    We present a next-to-leading order (NLO) computation of the full set of polarized and unpolarized electroweak semi-inclusive DIS (SIDIS) structure functions, whose knowledge is crucial for a precise extraction of polarized parton distributions. We focus on the phenomenology of the polarized structure functions for the kinematical conditions that could be reached in an Electron-Ion-Collider. We show that the NLO corrections are sizeable, particularly in the small-xx range. We test the sensitivity of these structure functions on certain quark distributions and compare it to the situation of inclusive DIS and electromagnetic SIDIS.Comment: 17 pages, 5 figure

    RF and Structural Characterization of SRF Thin Films

    Get PDF
    In the past years, energetic vacuum deposition methods have been developed in different laboratories to improve Nb/Cu technology for superconducting cavities. JLab is pursuing energetic condensation deposition via Electron Cyclotron Resonance. As part of this study, the influence of the deposition energy on the material and RF properties of the Nb thin film is investigated. The film surface and structure analyses are conducted with various techniques like X-ray diffraction, Transmission Electron Microscopy, Auger Electron Spectroscopy and RHEED. The microwave properties of the films are characterized on 50 mm disk samples with a 7.5 GHz surface impedance characterization system. This paper presents early results on surface impedance measurements in correlation with surface and material characterization for Nb films produced on sapphire and copper substrates

    Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    Get PDF
    Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization

    On the rise of proton-proton cross-sections at high energies

    Full text link
    The rise of the total, elastic and inelastic hadronic cross sections at high energies is investigated by means of an analytical parametrization, with the exponent of the leading logarithm contribution as a free fit parameter. Using derivative dispersion relations with one subtraction, two different fits to proton-proton and antiproton-proton total cross section and rho parameter data are developed, reproducing well the experimental information in the energy region 5 GeV - 7 TeV. The parametrization for the total cross sections is then extended to fit the elastic (integrated) cross section data in the same energy region, with satisfactory results. From these empirical results we extract the energy dependence of several physical quantities: inelastic cross section, ratios elastic/total, inelastic/total cross sections, ratio total-cross-section/elastic-slope, elastic slope and optical point. All data, fitted and predicted, are quite well described. We find a statistically consistent solution indicating: (1) an increase of the hadronic cross sections with the energy faster than the log-squared bound by Froissart and Martin; (2) asymptotic limits 1/3 and 2/3 for the ratios elastic/total and inelastic/total cross sections, respectively, a result in agreement with unitarity. These indications corroborate recent theoretical arguments by Ya. I. Azimov on the rise of the total cross section.Comment: 35 pages, 12 figures, discussions improved with further clarifications, references added and updated, one note added, results and conclusions unchanged. Version to be published in J. Phys. G: Nucl. Part. Phy
    corecore