22 research outputs found

    The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22)(q24.13;q11.21) in a young girl with dysgerminoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>RNF139/TRC8 </it>is a potential tumor suppressor gene with similarity to PTCH, a tumor suppressor implicated in basal cell carcinomas and glioblastomas. <it>TRC8 </it>has the potential to act in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control and has been identified in families with hereditary renal (RCC) and thyroid cancers. Haploinsufficiency of <it>TRC8 </it>may facilitate development of clear cell-RCC in association with <it>VHL </it>mutations, and may increase risk for other tumor types. We report a paternally inherited balanced translocation t(8;22) in a proposita with dysgerminoma.</p> <p>Methods</p> <p>The translocation was characterized by FISH and the breakpoints cloned, sequenced, and compared. DNA isolated from normal and tumor cells was checked for abnormalities by array-CGH. Expression of genes <it>TRC8 </it>and <it>TSN </it>was tested both on dysgerminoma and in the proposita and her father.</p> <p>Results</p> <p>The breakpoints of the translocation are located within the LCR-B low copy repeat on chromosome 22q11.21, containing the palindromic AT-rich repeat (PATRR) involved in recurrent and non-recurrent translocations, and in an AT-rich sequence inside intron 1 of the TRC8 tumor-suppressor gene at 8q24.13. <it>TRC8 </it>was strongly underexpressed in the dysgerminoma. Translin is underexpressed in the dysgerminoma compared to normal ovary.</p> <p><it>TRC8 </it>is a target of Translin (TSN), a posttranscriptional regulator of genes transcribed by the transcription factor CREM-tau in postmeiotic male germ cells.</p> <p>Conclusion</p> <p>A role for <it>TRC8 </it>in dysgerminoma may relate to its interaction with Translin. We propose a model in which one copy of <it>TRC8 </it>is disrupted by a palindrome-mediated translocation followed by complete loss of expression through suppression, possibly mediated by miRNA.</p

    Different molecular mechanisms causing 9p21 deletions in acute lymphoblastic leukemia of childhood

    Get PDF
    Deletion of chromosome 9p21 is a crucial event for the development of several cancers including acute lymphoblastic leukemia (ALL). Double strand breaks (DSBs) triggering 9p21 deletions in ALL have been reported to occur at a few defined sites by illegitimate action of the V(D)J recombination activating protein complex. We have cloned 23 breakpoint junctions for a total of 46 breakpoints in 17 childhood ALL (9 B- and 8 T-lineages) showing different size deletions at one or both homologous chromosomes 9 to investigate which particular sequences make the region susceptible to interstitial deletion. We found that half of 9p21 deletion breakpoints were mediated by ectopic V(D)J recombination mechanisms whereas the remaining half were associated to repeated sequences, including some with potential for non-B DNA structure formation. Other mechanisms, such as microhomology-mediated repair, that are common in other cancers, play only a very minor role in ALL. Nucleotide insertions at breakpoint junctions and microinversions flanking the breakpoints have been detected at 20/23 and 2/23 breakpoint junctions, respectively, both in the presence of recombination signal sequence (RSS)-like sequences and of other unspecific sequences. The majority of breakpoints were unique except for two cases, both T-ALL, showing identical deletions. Four of the 46 breakpoints coincide with those reported in other cases, thus confirming the presence of recurrent deletion hotspots. Among the six cases with heterozygous 9p deletions, we found that the remaining CDKN2A and CDKN2B alleles were hypermethylated at CpG islands

    De Novo Unbalanced Translocations in Prader-Willi and Angelman Syndrome Might Be the Reciprocal Product of inv dup(15)s

    Get PDF
    The 15q11-q13 region is characterized by high instability, caused by the presence of several paralogous segmental duplications. Although most mechanisms dealing with cryptic deletions and amplifications have been at least partly characterized, little is known about the rare translocations involving this region. We characterized at the molecular level five unbalanced translocations, including a jumping one, having most of 15q transposed to the end of another chromosome, whereas the der(15)(pter->q11-q13) was missing. Imbalances were associated either with Prader-Willi or Angelman syndrome. Array-CGH demonstrated the absence of any copy number changes in the recipient chromosome in three cases, while one carried a cryptic terminal deletion and another a large terminal deletion, already diagnosed by classical cytogenetics. We cloned the breakpoint junctions in two cases, whereas cloning was impaired by complex regional genomic architecture and mosaicism in the others. Our results strongly indicate that some of our translocations originated through a prezygotic/postzygotic two-hit mechanism starting with the formation of an acentric 15qter->q1::q1->qter representing the reciprocal product of the inv dup(15) supernumerary marker chromosome. An embryo with such an acentric chromosome plus a normal chromosome 15 inherited from the other parent could survive only if partial trisomy 15 rescue would occur through elimination of part of the acentric chromosome, stabilization of the remaining portion with telomere capture, and formation of a derivative chromosome. All these events likely do not happen concurrently in a single cell but are rather the result of successive stabilization attempts occurring in different cells of which only the fittest will finally survive. Accordingly, jumping translocations might represent successful rescue attempts in different cells rather than transfer of the same 15q portion to different chromosomes. We also hypothesize that neocentromerization of the original acentric chromosome during early embryogenesis may be required to avoid its loss before cell survival is finally assured

    Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome

    Get PDF
    In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS

    Very preterm birth is associated with PLAGL1 gene hypomethylation at birth and discharge

    Get PDF
    Aim: Recent findings show that DNA methylation is susceptible to very preterm (VPT) birth and to the experience of the early stay in the neonatal intensive care unit. The aim of the study was to compare PLAGL1 methylation between VPT and full-term (FT) infants at birth as well as between VPT infants at discharge and FT infants at birth. Methods: DNA was collected from cord blood of 56 VPT and 27 FT infants at birth and from peripheral blood in VPT infants at neonatal intensive care unit discharge. Sociodemographic and neonatal variables were considered. Results: PLAGL1 methylation at birth and at discharge were highly correlated in VPT infants. Lower methylation emerged in VPT infants at birth and discharge compared to FT counterparts. Conclusion: PLAGL1 hypomethylation emerged as a potential epigenetic mark of VPT birth. Future research is warranted to assess the functional consequences of PLAGL1 diminished methylation in VPT infants\u27 development

    Serotonin Transporter Gene (SLC6A4) Methylation Associates With Neonatal Intensive Care Unit Stay and 3-Month-Old Temperament in Preterm Infants

    No full text
    Preterm birth and Neonatal Intensive Care Unit (NICU) stay are early adverse stressful experiences, which may result in an altered temperamental profile. The serotonin transporter gene (SLC6A4), which has been linked to infant temperament, is susceptible to epigenetic regulation associated with early stressful experience. This study examined a moderation model in which the exposure to NICU-related stress and SLC6A4 methylation moderated infant temperament at 3 months of age. SLC6A4 methylation at 20 CpG sites was quantified in preterm infants (N = 48) and full-term infants (N = 30) from Italian middle-class families. Results suggested that in preterm infants NICU-related stress might be associated with alterations of serotonergic tone as a consequence of SLC6A4 methylation, which in turn, might associate with temperamental difficulties assessed at 3 months of age
    corecore