192 research outputs found

    Control of light transmission through opaque scattering media in space and time

    Get PDF
    We report the first experimental demonstration of combined spatial and temporal control of light trajectories through opaque media. This control is achieved by solely manipulating spatial degrees of freedom of the incident wavefront. As an application, we demonstrate that the present approach is capable to form bandwidth-limited ultrashort pulses from the otherwise randomly transmitted light with a controllable interaction time of the pulses with the medium. Our approach provides a new tool for fundamental studies of light propagation in complex media and has potential for applications for coherent control, sensing and imaging in nano- and biophotonics

    Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack

    Get PDF
    The broadband albedo of surface snow is determined both by the near-surface profile of the physical and chemical properties of the snowpack and by the spectral and angular characteristics of the incident solar radiation. Simultaneous measurements of the physical and chemical properties of snow were carried out at Summit Camp, Greenland (72°36´ N, 38°25´ W, 3210 m a.s.l.) in May and June 2011, along with spectral albedo measurements. One of the main objectives of the field campaign was to test our ability to predict snow spectral albedo by comparing the measured albedo to the albedo calculated with a radiative transfer model, using measured snow physical and chemical properties. To achieve this goal, we made daily measurements of the snow spectral albedo in the range 350–2200 nm and recorded snow stratigraphic information down to roughly 80 cm. The snow specific surface area (SSA) was measured using the DUFISSS instrument (DUal Frequency Integrating Sphere for Snow SSA measurement, Gallet et al., 2009). Samples were also collected for chemical analyses including black carbon (BC) and dust, to evaluate the impact of light absorbing particulate matter in snow. This is one of the most comprehensive albedo-related data sets combining chemical analysis, snow physical properties and spectral albedo measurements obtained in a polar environment. The surface albedo was calculated from density, SSA, BC and dust profiles using the DISORT model (DIScrete Ordinate Radiative Transfer, Stamnes et al., 1988) and compared to the measured values. Results indicate that the energy absorbed by the snowpack through the whole spectrum considered can be inferred within 1.10%. This accuracy is only slightly better than that which can be obtained considering pure snow, meaning that the impact of impurities on the snow albedo is small at Summit. In the near infrared, minor deviations in albedo up to 0.014 can be due to the accuracy of radiation and SSA measurements and to the surface roughness, whereas deviations up to 0.05 can be explained by the spatial heterogeneity of the snowpack at small scales, the assumption of spherical snow grains made for DISORT simulations and the vertical resolution of measurements of surface layer physical properties. At 1430 and around 1800 nm the discrepancies are larger and independent of the snow properties; we propose that they are due to errors in the ice refractive index at these wavelengths. This work contributes to the development of physically based albedo schemes in detailed snowpack models, and to the improvement of retrieval algorithms for estimating snow properties from remote sensing data

    Herschel/HIFI Spectral Mapping of C+^+, CH+^+, and CH in Orion BN/KL: The Prevailing Role of Ultraviolet Irradiation in CH+^+ Formation

    Get PDF
    The CH+^+ ion is a key species in the initial steps of interstellar carbon chemistry. Its formation in diverse environments where it is observed is not well understood, however, because the main production pathway is so endothermic (4280 K) that it is unlikely to proceed at the typical temperatures of molecular clouds. We investigation CH+^+ formation with the first velocity-resolved spectral mapping of the CH+^+ J=1−0,2−1J=1-0, 2-1 rotational transitions, three sets of CH Λ\Lambda-doubled triplet lines, 12^{12}C+^+ and 13^{13}C+^+, and CH3_3OH 835~GHz E-symmetry Q branch transitions, obtained with Herschel/HIFI over ≈\approx12 arcmin2^2 centered on the Orion BN/KL source. We present the spatial morphologies and kinematics, cloud boundary conditions, excitation temperatures, column densities, and 12^{12}C+^+ optical depths. Emission from C+^+, CH+^+, and CH is indicated to arise in the diluted gas, outside of the explosive, dense BN/KL outflow. Our models show that UV-irradiation provides favorable conditions for steady-state production of CH+^+ in this environment. Surprisingly, no spatial or kinematic correspondences of these species are found with H2_2 S(1) emission tracing shocked gas in the outflow. We propose that C+^+ is being consumed by rapid production of CO to explain the lack of C+^+ and CH+^+ in the outflow, and that fluorescence provides the reservoir of H2_2 excited to higher ro-vibrational and rotational levels. Hence, in star-forming environments containing sources of shocks and strong UV radiation, a description of CH+^+ formation and excitation conditions is incomplete without including the important --- possibly dominant --- role of UV irradiation.Comment: Accepted for publication in The Astrophysical Journa

    Protocol for a realist review of workplace learning in postgraduate medical education and training

    Get PDF
    Postgraduate medical education and training (PGMET) is a complex social process which happens predominantly during the delivery of patient care. The clinical learning environment (CLE), the context for PGMET, shapes the development of the doctors who learn and work within it, ultimately impacting the quality and safety of patient care. Clinical workplaces are complex, dynamic systems in which learning emerges from non-linear interactions within a network of related factors and activities. Those tasked with the design and delivery of postgraduate medical education and training need to understand the relationship between the processes of medical workplace learning and these contextual elements in order to optimise conditions for learning. We propose to conduct a realist synthesis of the literature to address the overarching questions; how, why and in what circumstances do doctors learn in clinical environments? This review is part of a funded projected with the overall aim of producing guidelines and recommendations for the design of high quality clinical learning environments for postgraduate medical education and training

    Polymer-based paclitaxel-eluting stents reduce in-stent neointimal tissue proliferation A serial volumetric intravascular ultrasound analysis from the TAXUS-IV trial

    Get PDF
    ObjectivesThe aim of this study was to use serial volumetric intravascular ultrasound (IVUS) to evaluate the effects of polymer-based, paclitaxel-eluting stents on in-stent neointima formation and late incomplete stent apposition.BackgroundThe TAXUS-IV trial demonstrated that the slow-release, polymer-based, paclitaxel-eluting stent reduces angiographic restenosis and the need for repeat revascularization procedures. Serial IVUS studies reveal details of the pattern of vascular responses provoked by stent implantation that provide insight into device safety and efficacy.MethodsIn the TAXUS-IV trial, patients were randomized to the slow-release, polymer-based, paclitaxel-eluting TAXUS stent or a bare-metal EXPRESS stent (Boston Scientific Corp., Natick, Massachusetts). As part of a formal substudy, complete volumetric IVUS data were available in 170 patients, including 88 TAXUS patients and 82 controls, at implantation and at nine-month follow-up.ResultsNo baseline differences were present in the clinical characteristics or IVUS parameters between the control and TAXUS groups. At nine-month follow-up, IVUS lumen volumes were larger in the TAXUS group (123 ± 43 mm3vs. 104 ± 44 mm3, p = 0.005), due to a reduction in neointimal volume (18 ± 18 mm3vs. 41 ± 23 mm3, p < 0.001). Millimeter-by-millimeter analysis within the stent demonstrated uniform suppression of neointimal growth along the entire stent length. Late lumen loss was similar at the proximal edge of the stent between the two groups, and reduced with the TAXUS stent at the distal edge (p = 0.004). Incomplete stent apposition at nine months was observed in only 3.0% of control and 4.0% of TAXUS stents (p = 0.12).ConclusionsPolymer-based, paclitaxel-eluting TAXUS stents are effective in inhibiting neointimal tissue proliferation, and do not result in late incomplete stent apposition

    Classifying aerosol type using in situ surface spectral aerosol optical properties

    Get PDF
    Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes. Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station. The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites (dust and carbonaceous aerosol); however, current classification schemes perform poorly when predicting dominant aerosol type at remote marine and Arctic sites and at stations with more complex locations and topography where variable aerosol populations are not well represented by median optical properties. Although the aerosol classification methods presented here provide new ways to reduce ambiguity in typing schemes, there is more work needed to find aerosol typing methods that are useful for a larger range of geographic locations and aerosol populations

    The role of fiscal policy in Britain's Great Inflation

    Get PDF
    We investigate whether the Fiscal Theory of the Price Level (FTPL) can explain UK inflation in the 1970s. We confront the identification problem involved by setting up the FTPL as a structural model for the episode and pitting it against an alternative Orthodox model; the models have a reduced form that is common in form but, because each model is over-identified, numerically distinct. We use indirect inference to test which model could be generating the VECM approximation to the reduced form that we estimate on the data for the episode. Neither model is rejected, though the FTPL model substantially outperforms the Orthodox. But by far the best account of the period assumes that expectations were a probability-weighted combination of the two regimes. Fiscal policy has a substantial role in this weighted model in determining inflation. A similar model accounts for the 1980s but this role of fiscal policy is much diminished

    Herschel/HIFI Spectral Mapping of C^+, CH^+, and CH in Orion BN/KL: The Prevailing Role of Ultraviolet Irradiation in CH^+ Formation

    Get PDF
    The CH^+ ion is a key species in the initial steps of interstellar carbon chemistry. Its formation in diverse environments where it is observed is not well understood, however, because the main production pathway is so endothermic (4280 K) that it is unlikely to proceed at the typical temperatures of molecular clouds. We investigate the formation of this highly reactive molecule with the first velocity-resolved spectral mapping of the CH^+ J = 1−0, 2−1 rotational transitions, three sets of CH Λ-doubled triplet lines, ^(12)C^+ and ^(13)C^+ ^(2)P_(3/2) - ^(2)P_(1/2), and CH_(3)OH 835 GHz E-symmetry Q-branch transitions, obtained with Herschel/HIFI over a region of ≈ 12 arcmin^2 centered on the Orion BN/KL source. We present the spatial morphologies and kinematics, cloud boundary conditions, excitation temperatures, column densities, and ^(12)C^+ optical depths. Emission from all of C^+, CH^+, and CH is indicated to arise in the diluted gas, outside the explosive, dense BN/KL outflow. Our models show that UV irradiation provides favorable conditions for steady-state production of CH^+ in this environment. Surprisingly, no spatial or kinematic correspondences of the observed species are found with H_2 S(1) emission tracing shocked gas in the outflow. We propose that C^+ is being consumed by rapid production of CO to explain the lack of both C^+ and CH^+ in the outflow. Hence, in star-forming environments containing sources of shocks and strong UV radiation, a description of the conditions leading to CH^+ formation and excitation is incomplete without including the important—possibly dominant—role of UV irradiation
    • …
    corecore