587 research outputs found

    Slow magnetoacoustic waves in coronal loops : EIT and TRACE

    Get PDF
    On May 13, 1998 the EIT (Extreme ultraviolet Imaging Telescope) on board of SoHO (Solar and Heliospheric Observatory) and TRACE (Transition Region And Coronal Explorer) instruments produced simultaneous high cadence image sequences of the same active region (AR 8218). TRACE achieved a 25 s cadence in the FeIX (171 Å) bandpass while EIT achieved a 15 s cadence (operating in "shutterless mode", SoHO JOP 80) in the FeXII (195 Å) bandpass. These high cadence observations in two complementary wavelengths have revealed the existence of weak transient disturbances in an extended coronal loop system. These propagating disturbances (PDs) seem to be a common phenomenon in this part of the active region. The disturbances originate from small scale brightenings at the footpoints of the loops and propagate along the loops. The projected propagation speeds roughly vary between 65 and 150 km s-1 for both instruments which is close to and below the expected sound speed in the coronal loops. The measured slow magnetoacoustic propagation speeds seem to suggest that the transients are sound (or slow) wave disturbances. This work differs from previous studies in the sense that it is based on a multi-wavelength observation of an entire loop bundle at high cadence by two EUV imagers. The observation of sound waves along the same path shows that they propagate along the same loop, suggesting that loops contain sharp temperature gradients and consist of either concentric shells or thin loop threads, at different temperatures

    Optoelectronic developments for remote-handled maintenance tasks in ITER

    Get PDF
    Remotely handled maintenance tools operated in the future International Thermonuclear Experimental Reactor (ITER) will face a harsh radiation environment, with total dose level requirements of several MGy. Optical fiber data communication has been considered as an alternative to conventional electronic transmission between the control room and remote handled maintenance equipment, mainly owing to its insentivity to electro-magnetic interference and to its wavelength encoded multiplexing capabilities. In this paper we summarise main results obtained at SCK•CEN over the past years towards the development of radiation tolerant fibre-optic communication links and report on the radiation tolerance of various individual optical components such as optical fibres, laser diodes and photodetectors, as well as their associated electronic driver circuits

    The SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing

    Full text link
    The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope on board ESA's Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54x54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS-APS detector. This article provides reference documentation for users of the SWAP image data.Comment: 26 pages, 9 figures, 1 movi

    Determination of the radial profile of the photoelastic coefficient of plastic optical fibers

    Get PDF
    We developed a measurement method to determine the radial distribution of the photoelastic coefficient C(r) in step-index polymer optical fibers (POFs). The method is based on the measurement of the retardance profile of a transversally illuminated fiber for increasing tensile load. The radial profile C(r) is obtained from the inverse Abel transform of this retardance profile. We measured polymer fibers from different manufacturers. The radial profile of the photoelastic constant can considerable vary depending on the type and treatment of POFs, even when made from similar materials, which leads to the conclusion that the photoelastic constant should be characterized for each different type of POF. The impact of annealing the fiber samples on C(r) is also addressed

    Coordination within the remote sensing payload on the Solar Orbiter mission

    Get PDF
    Context. To meet the scientific objectives of the mission, the Solar Orbiter spacecraft carries a suite of in-situ (IS) and remote sensing (RS) instruments designed for joint operations with inter-instrument communication capabilities. Indeed, previous missions have shown that the Sun (imaged by the RS instruments) and the heliosphere (mainly sampled by the IS instruments) should be considered as an integrated system rather than separate entities. Many of the advances expected from Solar Orbiter rely on this synergistic approach between IS and RS measurements. / Aims. Many aspects of hardware development, integration, testing, and operations are common to two or more RS instruments. In this paper, we describe the coordination effort initiated from the early mission phases by the Remote Sensing Working Group. We review the scientific goals and challenges, and give an overview of the technical solutions devised to successfully operate these instruments together. / Methods. A major constraint for the RS instruments is the limited telemetry (TM) bandwidth of the Solar Orbiter deep-space mission compared to missions in Earth orbit. Hence, many of the strategies developed to maximise the scientific return from these instruments revolve around the optimisation of TM usage, relying for example on onboard autonomy for data processing, compression, and selection for downlink. The planning process itself has been optimised to alleviate the dynamic nature of the targets, and an inter-instrument communication scheme has been implemented which can be used to autonomously alter the observing modes. We also outline the plans for in-flight cross-calibration, which will be essential to the joint data reduction and analysis. / Results. The RS instrument package on Solar Orbiter will carry out comprehensive measurements from the solar interior to the inner heliosphere. Thanks to the close coordination between the instrument teams and the European Space Agency, several challenges specific to the RS suite were identified and addressed in a timely manner

    The Extreme Ultraviolet Imager (EUI) onboard the SOLAR ORBITER mission

    Full text link
    peer reviewedSolar Orbiter will for the first time study the Sun with a full suite of in-situ and remote sensing instruments from inside 0.25 AU and will provide imaging and spectral observations of the Sun’s polar regions, from out of the ecliptic. This proximity to the Sun will also have the significant advantage that the spacecraft will fly in near synchronization with the Sun’s rotation, allowing observations of the solar surface and heliosphere to be studied from a near co-rotating vantage point for almost a complete solar rotation. The mission’s ambitious characteristics draw severe constraints on the design of these instruments. The scientific objectives of Solar Orbiter rely ubiquitously on the Extreme EUV Imager suite (EUI). The EUI instrument suite on board of Solar Orbiter is composed of two high resolution imagers (HRI), one at Lyman α and one dual band at the two 174 and 335 EUV passbands in the extreme UV, and one dual band full-sun imager (FSI) working alternatively at the two 174 and 304 EUV passbands. In all the units, the image is produced by a mirror-telescope, working in nearly normal incidence. The EUV reflectivity of the optical surfaces is obtained with specific EUV multilayered coatings, providing the spectral selection of the EUV units (1HRI and 1 FSI). The spectral selection is complemented with very thin filters rejecting the visible and IR radiation. Due to its orbit, EUI / Solar Orbiter will see 20 solar constants and an entrance baffle to limit the solar heat input into EUI is needed. The paper presents the scientific objectives of EUI and also covers the EUI instrument development plan which will require some trade-off between existing and promising technologies

    Polymer photonic sensing skin

    Get PDF
    A highly flexible sensing skin with embedded polymer optical fibre Bragg gratings is characterised The response to pressure and strain compare favourably to a similar skin instrumented with silica fibre Bragg grating sensors
    corecore