77 research outputs found

    Limits on the production of scalar leptoquarks from Z (0) decays at LEP

    Get PDF
    A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equal to the electromagnetic one. An upper limit is also given on the coupling alpha(lambda) as a function of the leptoquark mass m(D0)

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    The imidazoline RX871024 induces death of proliferating insulin-secreting cells by activation of c-jun N-terminal kinase

    No full text
    An insufficient number of insulin-producing beta-cells is a major cause of defective control of blood glucose in both type 1 and type 2 diabetes. The aim of this study was to clarify whether the insulinotropic imidazolines can affect the survival of highly proliferating insulin-secreting cells, here exemplified by the MIN6 cell line. Our data demonstrate that RX871024, but not efaroxan, triggered MIN6 cell death and potentiated death induced by a combination of the pro-inflammatory cytokines interleukin-1 beta, interferon- gamma and tumor necrosis factor-alpha. These effects did not involve changes in nitric oxide production but correlated with stimulation of c-jun N-terminal kinase (JNK) activity and activation of caspases-1, -3, -8 and -9. Our results suggest that the imidazoline RX871024 causes death of highly proliferating insulin-secreting cells, putatively via augmentation of JNK activity, a finding that may impact on the possibility of using compounds of similar activity in the treatment of diabetes

    Short and prolonged exposure to hyperglycaemia in human fibroblasts and endothelial cells: Metabolic and osmotic effects.

    No full text
    High blood glucose levels are the main feature of diabetes. However, the underlying mechanism linking high glucose concentration to diabetic complications is still not fully elucidated, particularly with regard to human physiology. Excess of glucose is likely to trigger a metabolic response depending on the cell features, activating deleterious pathways involved in the complications of diabetes. In this study, we aim to elucidate how acute and prolonged hyperglycaemia alters the biology and metabolism in human fibroblasts and endothelial cells. We found that hyperglycaemia triggers a metabolic switch from oxidative phosphorylation to glycolysis that is maintained over prolonged time. Moreover, osmotic pressure is a major factor in the early metabolic response, decreasing both mitochondrial transmembrane potential and cellular proliferation. After prolonged exposure to hyperglycaemia we observed decreased mitochondrial steady-state and uncoupled respiration, together with a reduced ATP/ADP ratio. At the same time, we could not detect major changes in mitochondrial transmembrane potential and reactive oxygen species. We suggest that the physiological and metabolic alterations observed in healthy human primary fibroblasts and endothelial cells are an adaptive response to hyperglycaemia. The severity of metabolic and bioenergetics impairment associated with diabetic complications may occur after longer glucose exposure or due to interactions with cell types more sensitive to hyperglycaemia

    ARA290 Improves Insulin Release and Glucose Tolerance in Type 2 Diabetic Goto-Kakizaki Rats

    No full text
    Effects of ARA290 on glucose homeostasis were studied in type 2 diabetic Goto-Kakizaki (GK) rats. In GK rats receiving ARA290 daily for up to 4 wks, plasma glucose concentrations were lower after 3 and 4 wks, and hemoglobin A(1c) (Hb A(1c)) was reduced by similar to 20% without changes in whole body and hepatic insulin sensitivity. Glucose-stimulated insulin secretion was increased in islets from ARA290-treated rats. Additionally, in response to glucose, carbachol and KCl, islet cytoplasmic free Ca2+ concentrations, [Ca2+](i), were higher and the frequency of [Ca2+](i) oscillations enhanced compared with placebo. ARA290 also improved stimulus-secretion coupling for glucose in GK rat islets, as shown by an improved glucose oxidation rate, ATP production and acutely enhanced glucose-stimulated insulin secretion. ARA290 also exerted an effect distal to the ATP-sensitive potassium (KATP) channel on the insulin exocytotic pathway, since the insulin response was improved following islet depolarization by KCl when KATP channels were kept open by diazoxide. Finally, inhibition of protein kinase A completely abolished effects of ARA290 on insulin secretion. In conclusion, ARA290 improved glucose tolerance without affecting -hematocrit in diabetic GK rats. This effect appears to be due to improved beta-cell glucose metabolism and [Ca2+](i) handling, and thereby enhanced glucose-induced insulin release

    ARA290 Improves Insulin Release and Glucose Tolerance in Type 2 Diabetic Goto-Kakizaki Rats

    No full text
    Effects of ARA290 on glucose homeostasis were studied in type 2 diabetic Goto-Kakizaki (GK) rats. In GK rats receiving ARA290 daily for up to 4 wks, plasma glucose concentrations were lower after 3 and 4 wks, and hemoglobin A(1c) (Hb A(1c)) was reduced by similar to 20% without changes in whole body and hepatic insulin sensitivity. Glucose-stimulated insulin secretion was increased in islets from ARA290-treated rats. Additionally, in response to glucose, carbachol and KCl, islet cytoplasmic free Ca2+ concentrations, [Ca2+](i), were higher and the frequency of [Ca2+](i) oscillations enhanced compared with placebo. ARA290 also improved stimulus-secretion coupling for glucose in GK rat islets, as shown by an improved glucose oxidation rate, ATP production and acutely enhanced glucose-stimulated insulin secretion. ARA290 also exerted an effect distal to the ATP-sensitive potassium (KATP) channel on the insulin exocytotic pathway, since the insulin response was improved following islet depolarization by KCl when KATP channels were kept open by diazoxide. Finally, inhibition of protein kinase A completely abolished effects of ARA290 on insulin secretion. In conclusion, ARA290 improved glucose tolerance without affecting -hematocrit in diabetic GK rats. This effect appears to be due to improved beta-cell glucose metabolism and [Ca2+](i) handling, and thereby enhanced glucose-induced insulin release.Proteomic

    Mitochondrial impairment and intracellular reactive oxygen species alter primary cilia morphology.

    Get PDF
    Primary cilia have recently emerged as cellular signaling organelles. Their homeostasis and function require a high amount of energy. However, how energy depletion and mitochondria impairment affect cilia have barely been addressed. We first studied the spatial relationship between a mitochondria subset in proximity to the cilium in vitro, finding similar mitochondrial activity measured as mitochondrial membrane potential compared with the cellular network. Next, using common primary cilia cell models and inhibitors of mitochondrial energy production, we found alterations in cilia number and/or length due to energy depletion and mitochondrial reactive oxygen species (ROS) overproduction. Finally, by using a mouse model of type 2 diabetes mellitus, we provided in vivo evidence that cilia morphology is impaired in diabetic nephropathy, which is characterized by ROS overproduction and impaired mitochondrial metabolism. In conclusion, we showed that energy imbalance and mitochondrial ROS affect cilia morphology and number, indicating that conditions characterized by mitochondria and radicals imbalances might lead to ciliary impairment

    Ciliary dysfunction impairs beta-cell insulin secretion and promotes development of type 2 diabetes in rodents.

    No full text
    Type 2 diabetes mellitus is affecting more than 382 million people worldwide. Although much progress has been made, a comprehensive understanding of the underlying disease mechanism is still lacking. Here we report a role for the β-cell primary cilium in type 2 diabetes susceptibility. We find impaired ​glucose handling in young ​Bbs4−/− mice before the onset of obesity. Basal body/ciliary perturbation in murine pancreatic islets leads to impaired first phase insulin release ex and in vivo. ​Insulin receptor is recruited to the cilium of stimulated β-cells and ciliary/basal body integrity is required for activation of downstream targets of insulin signalling. We also observe a reduction in the number of ciliated β-cells along with misregulated ciliary/basal body gene expression in pancreatic islets in a diabetic rat model. We suggest that ciliary function is implicated in insulin secretion and insulin signalling in the β-cell and that ciliary dysfunction could contribute to type 2 diabetes susceptibility
    corecore