156 research outputs found

    Cenozoic inversion of the Weald-Boulonnais and the Dover Strait: new data

    Get PDF
    The Boulonnais is a former marine gulf superimposed on a zone of tectonic inversion, which was already excavated at least at the early Middle Eocene. New sedimentalogical and paleopedological data discover within the Boulonnais and fresh seismic sections able now to better understand the process of inversion step by step. The initial breaching probably took place in the late Eocene. The Dover Strait was probably open during the Lutetian, a part of the Oligocene and of the Late Neogene. Oligocene and Pliocene faunal assemblages are identical on both sides of the Strait. It was closed again for tectonic and eustatic reasons in the early Quaternary and reopen lately from Last Interglacial. This reopening is related with the evolution of the Western Channel and of its paleovalley system. This inversion of the Variscan front accommodates most of the shortening induced by the Pyrenean Orogen on the Western border of the European plate. The inversion of the Dover Strait region is almost synchronic with those of other basins of the Channel and North Sea areas. Tectonic, geomorphologic and climatic implications of this dynamic are discussed within the Western European context

    Caffeine does not cause override of the G2/M block induced by UVc or gamma radiation in normal human skin fibroblasts

    Get PDF
    Caffeine has for many years been known to be involved in the sensitization of DNA to damage. One potential mechanism recently put forward is an override of the G2/M block induced by irradiation, which would leave the cells less time for DNA repair prior to mitosis. However, different cell types display a variety of responses and no clear pathway has yet emerged, especially as little is known about the capacity of this agent to enhance DNA damage in normal, untransformed cells. Continuous exposure to commonly used caffeine concentrations (1–5 mM) inhibited the proliferation of normal human fibroblasts (NHFs) in a dose-dependent manner to up to 80% at 5 mM. Exposure of exponentially growing NHFs to UVc radiation (20 J m–2) or γ radiation (2.5–8 Gy) led to a 45–60% inhibition of proliferation and protracted accumulation of cells in the G2/M phase. Addition of 2 mM caffeine after irradiation induced slowing of the S phase passage, with a resultant delay in G2/M accumulation mimicking a G2/M block override. These results were confirmed by stathmokinetic studies, which showed delayed entry of the cells into mitosis in the presence of caffeine. Our data demonstrate that caffeine primarily inhibits replicative DNA synthesis and suggest that, at least in normal cells, caffeine potentiates the cytotoxicity of radiation by intervening in DNA repair rather than by overriding the G2/M block. © 2000 Cancer Research Campaig

    Structural and functional analyses of the DMC1-M200V polymorphism found in the human population

    Get PDF
    The M200V polymorphism of the human DMC1 protein, which is an essential, meiosis-specific DNA recombinase, was found in an infertile patient, raising the question of whether this homozygous human DMC1-M200V polymorphism may cause infertility by affecting the function of the human DMC1 protein. In the present study, we determined the crystal structure of the human DMC1-M200V variant in the octameric-ring form. Biochemical analyses revealed that the human DMC1-M200V variant had reduced stability, and was moderately defective in catalyzing in vitro recombination reactions. The corresponding M194V mutation introduced in the Schizosaccharomyces pombe dmc1 gene caused a significant decrease in the meiotic homologous recombination frequency. Together, these structural, biochemical and genetic results provide extensive evidence that the human DMC1-M200V mutation impairs its function, supporting the previous interpretation that this single-nucleotide polymorphism is a source of human infertility

    Prevalence of and Predictive Factors for Burnout Among French Urologists in Training

    Get PDF
    The burnout rate among young doctors currently seems to be increasing [1]. It is essential to be able to diagnose and prevent this condition to better take care of young caregivers. Burnout is defined as a “feeling of intense exhaustion, loss of control and inability to achieve concrete results at work” according to the World Health Organisation. The assessment questionnaire used most often is the Maslach Burnout Inventory (MBI), which covers (1) emotional exhaustion, (2) depersonalisation, and (3) personal accomplishment [2]

    The Drosophila Zinc Finger Protein Trade Embargo Is Required for Double Strand Break Formation in Meiosis

    Get PDF
    Homologous recombination in meiosis is initiated by the programmed induction of double strand breaks (DSBs). Although the Drosophila Spo11 ortholog Mei-W68 is required for the induction of DSBs during meiotic prophase, only one other protein (Mei-P22) has been shown to be required for Mei-W68 to exert this function. We show here that the chromatin-associated protein Trade Embargo (Trem), a C2H2 zinc finger protein, is required to localize Mei-P22 to discrete foci on meiotic chromosomes, and thus to promote the formation of DSBs, making Trem the earliest known function in the process of DSB formation in Drosophila oocytes. We speculate that Trem may act by either directing the binding of Mei-P22 to preferred sites of DSB formation or by altering chromatin structure in a manner that allows Mei-P22 to form foci

    Ctp1 and the MRN-Complex Are Required for Endonucleolytic Rec12 Removal with Release of a Single Class of Oligonucleotides in Fission Yeast

    Get PDF
    DNA double-strand breaks (DSBs) are formed during meiosis by the action of the topoisomerase-like Spo11/Rec12 protein, which remains covalently bound to the 5′ ends of the broken DNA. Spo11/Rec12 removal is required for resection and initiation of strand invasion for DSB repair. It was previously shown that budding yeast Spo11, the homolog of fission yeast Rec12, is removed from DNA by endonucleolytic cleavage. The release of two Spo11 bound oligonucleotide classes, heterogeneous in length, led to the conjecture of asymmetric cleavage. In fission yeast, we found only one class of oligonucleotides bound to Rec12 ranging in length from 17 to 27 nucleotides. Ctp1, Rad50, and the nuclease activity of Rad32, the fission yeast homolog of Mre11, are required for endonucleolytic Rec12 removal. Further, we detected no Rec12 removal in a rad50S mutant. However, strains with additional loss of components localizing to the linear elements, Hop1 or Mek1, showed some Rec12 removal, a restoration depending on Ctp1 and Rad32 nuclease activity. But, deletion of hop1 or mek1 did not suppress the phenotypes of ctp1Δ and the nuclease dead mutant (rad32-D65N). We discuss what consequences for subsequent repair a single class of Rec12-oligonucleotides may have during meiotic recombination in fission yeast in comparison to two classes of Spo11-oligonucleotides in budding yeast. Furthermore, we hypothesize on the participation of Hop1 and Mek1 in Rec12 removal

    Functional Analysis of an Acid Adaptive DNA Adenine Methyltransferase from Helicobacter pylori 26695

    Get PDF
    HP0593 DNA-(N6-adenine)-methyltransferase (HP0593 MTase) is a member of a Type III restriction-modification system in Helicobacter pylori strain 26695. HP0593 MTase has been cloned, overexpressed and purified heterologously in Escherichia coli. The recognition sequence of the purified MTase was determined as 5′-GCAG-3′and the site of methylation was found to be adenine. The activity of HP0593 MTase was found to be optimal at pH 5.5. This is a unique property in context of natural adaptation of H. pylori in its acidic niche. Dot-blot assay using antibodies that react specifically with DNA containing m6A modification confirmed that HP0593 MTase is an adenine-specific MTase. HP0593 MTase occurred as both monomer and dimer in solution as determined by gel-filtration chromatography and chemical-crosslinking studies. The nonlinear dependence of methylation activity on enzyme concentration indicated that more than one molecule of enzyme was required for its activity. Analysis of initial velocity with AdoMet as a substrate showed that two molecules of AdoMet bind to HP0593 MTase, which is the first example in case of Type III MTases. Interestingly, metal ion cofactors such as Co2+, Mn2+, and also Mg2+ stimulated the HP0593 MTase activity. Preincubation and isotope partitioning analyses clearly indicated that HP0593 MTase-DNA complex is catalytically competent, and suggested that DNA binds to the MTase first followed by AdoMet. HP0593 MTase shows a distributive mechanism of methylation on DNA having more than one recognition site. Considering the occurrence of GCAG sequence in the potential promoter regions of physiologically important genes in H. pylori, our results provide impetus for exploring the role of this DNA MTase in the cellular processes of H. pylori

    Comparison of Proteomic and Transcriptomic Profiles in the Bronchial Airway Epithelium of Current and Never Smokers

    Get PDF
    Although prior studies have demonstrated a smoking-induced field of molecular injury throughout the lung and airway, the impact of smoking on the airway epithelial proteome and its relationship to smoking-related changes in the airway transcriptome are unclear.Airway epithelial cells were obtained from never (n = 5) and current (n = 5) smokers by brushing the mainstem bronchus. Proteins were separated by one dimensional polyacrylamide gel electrophoresis (1D-PAGE). After in-gel digestion, tryptic peptides were processed via liquid chromatography/ tandem mass spectrometry (LC-MS/MS) and proteins identified. RNA from the same samples was hybridized to HG-U133A microarrays. Protein detection was compared to RNA expression in the current study and a previously published airway dataset. The functional properties of many of the 197 proteins detected in a majority of never smokers were similar to those observed in the never smoker airway transcriptome. LC-MS/MS identified 23 proteins that differed between never and current smokers. Western blotting confirmed the smoking-related changes of PLUNC, P4HB1, and uteroglobin protein levels. Many of the proteins differentially detected between never and current smokers were also altered at the level of gene expression in this cohort and the prior airway transcriptome study. There was a strong association between protein detection and expression of its corresponding transcript within the same sample, with 86% of the proteins detected by LC-MS/MS having a detectable corresponding probeset by microarray in the same sample. Forty-one proteins identified by LC-MS/MS lacked detectable expression of a corresponding transcript and were detected in <or=5% of airway samples from a previously published dataset.1D-PAGE coupled with LC-MS/MS effectively profiled the airway epithelium proteome and identified proteins expressed at different levels as a result of cigarette smoke exposure. While there was a strong correlation between protein and transcript detection within the same sample, we also identified proteins whose corresponding transcripts were not detected by microarray. This noninvasive approach to proteomic profiling of airway epithelium may provide additional insights into the field of injury induced by tobacco exposure
    corecore