10 research outputs found

    Comparison of Five Oxidative Stress Biomarkers in Vegans and Omnivores from Germany and Finland

    Get PDF
    When the amount of reactive oxygen species produced by human metabolism cannot be balanced by antioxidants, this phenomenon is commonly referred to as oxidative stress. It is hypothesised that diets with high amounts of plant food products may have a beneficial impact on oxidative stress status. However, few studies have examined whether a vegan diet is associated with lower oxidative stress compared to an omnivorous diet. The present cross-sectional study aimed to compare the levels of five oxidative stress biomarkers in vegans and omnivores. Data of 36 vegans and 36 omnivores from Germany and of 21 vegans and 18 omnivores from Finland were analysed. HPLC coupled with mass spectrometry or fluorescence detection and ELISA methods were used to measure the oxidative stress biomarkers malondialdehyde (MDA), protein carbonyls and 3-nitrotyrosine in plasma and 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-iso-PGF2α) in 24 h urine. Analyses of variance and covariance, considering potential confounders, were used. Vegans and omnivores showed no differences in MDA and protein carbonyl concentrations. In Finnish but not in German vegans, the concentrations of 3-nitrotyrosine were lower compared to those in omnivores (p = 0.047). In Germany, vegans showed lower excretion levels of 8-iso-PGF2α than omnivores (p = 0.002) and with a trend also of 8-OHdG (p = 0.05). The sensitivity analysis suggests lower 8-iso-PGF2α excretion levels in women compared to men, independently of the dietary group. The present study contributes to expanding our knowledge of the relationship between diet and oxidative stress and showed that 3-nitrotyrosine, 8-OHdG and 8-iso-PGF2α tended to be lower in vegans. Furthermore, studies are recommended to validate the present findings

    Comparison of Five Oxidative Stress Biomarkers in Vegans and Omnivores from Germany and Finland

    Get PDF
    When the amount of reactive oxygen species produced by human metabolism cannot be balanced by antioxidants, this phenomenon is commonly referred to as oxidative stress. It is hypothesised that diets with high amounts of plant food products may have a beneficial impact on oxidative stress status. However, few studies have examined whether a vegan diet is associated with lower oxidative stress compared to an omnivorous diet. The present cross-sectional study aimed to compare the levels of five oxidative stress biomarkers in vegans and omnivores. Data of 36 vegans and 36 omnivores from Germany and of 21 vegans and 18 omnivores from Finland were analysed. HPLC coupled with mass spectrometry or fluorescence detection and ELISA methods were used to measure the oxidative stress biomarkers malondialdehyde (MDA), protein carbonyls and 3-nitrotyrosine in plasma and 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-iso-PGF2α) in 24 h urine. Analyses of variance and covariance, considering potential confounders, were used. Vegans and omnivores showed no differences in MDA and protein carbonyl concentrations. In Finnish but not in German vegans, the concentrations of 3-nitrotyrosine were lower compared to those in omnivores (p = 0.047). In Germany, vegans showed lower excretion levels of 8-iso-PGF2α than omnivores (p = 0.002) and with a trend also of 8-OHdG (p = 0.05). The sensitivity analysis suggests lower 8-iso-PGF2α excretion levels in women compared to men, independently of the dietary group. The present study contributes to expanding our knowledge of the relationship between diet and oxidative stress and showed that 3-nitrotyrosine, 8-OHdG and 8-iso-PGF2α tended to be lower in vegans. Furthermore, studies are recommended to validate the present findings

    Comparison of Five Oxidative Stress Biomarkers in Vegans and Omnivores from Germany and Finland

    Get PDF
    When the amount of reactive oxygen species produced by human metabolism cannot be balanced by antioxidants, this phenomenon is commonly referred to as oxidative stress. It is hypothesised that diets with high amounts of plant food products may have a beneficial impact on oxidative stress status. However, few studies have examined whether a vegan diet is associated with lower oxidative stress compared to an omnivorous diet. The present cross-sectional study aimed to compare the levels of five oxidative stress biomarkers in vegans and omnivores. Data of 36 vegans and 36 omnivores from Germany and of 21 vegans and 18 omnivores from Finland were analysed. HPLC coupled with mass spectrometry or fluorescence detection and ELISA methods were used to measure the oxidative stress biomarkers malondialdehyde (MDA), protein carbonyls and 3-nitrotyrosine in plasma and 8-hydroxy-2 '-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2 alpha (8-iso-PGF2 alpha) in 24 h urine. Analyses of variance and covariance, considering potential confounders, were used. Vegans and omnivores showed no differences in MDA and protein carbonyl concentrations. In Finnish but not in German vegans, the concentrations of 3-nitrotyrosine were lower compared to those in omnivores (p = 0.047). In Germany, vegans showed lower excretion levels of 8-iso-PGF2 alpha than omnivores (p = 0.002) and with a trend also of 8-OHdG (p = 0.05). The sensitivity analysis suggests lower 8-iso-PGF2 alpha excretion levels in women compared to men, independently of the dietary group. The present study contributes to expanding our knowledge of the relationship between diet and oxidative stress and showed that 3-nitrotyrosine, 8-OHdG and 8-iso-PGF2 alpha tended to be lower in vegans. Furthermore, studies are recommended to validate the present findings.Peer reviewe

    Urinary Excretion of Mercapturic Acids of the Rodent Carcinogen Methyleugenol after a Single Meal of Basil Pesto: A Controlled Exposure Study in Humans

    Get PDF
    Methyleugenol (ME), found in numerous plants and spices, is a rodent carcinogen and is classified as “possibly carcinogenic to humans”. The hypothesis of a carcinogenic risk for humans is supported by the observation of ME-derived DNA adducts in almost all human liver and lung samples examined. Therefore, a risk assessment of ME is needed. Unfortunately, biomarkers of exposure for epidemiological studies are not yet available. We hereby present the first detection of N-acetyl-l-cysteine conjugates (mercapturic acids) of ME in human urine samples after consumption of a popular ME-containing meal, pasta with basil pesto. We synthesized mercapturic acid conjugates of ME, identified the major product as N-acetyl-S-[3′-(3,4-dimethoxyphenyl)allyl]-l-cysteine (E-3′-MEMA), and developed methods for its extraction and LC–MS/MS quantification in human urine. For conducting an exposure study in humans, a basil cultivar with a suitable ME content was grown for the preparation of basil pesto. A defined meal containing 100 g of basil pesto, corresponding to 1.7 mg ME, was served to 12 participants, who collected the complete urine at defined time intervals for 48 h. Using d6-E-3′-MEMA as an internal standard for LC–MS/MS quantification, we were able to detect E-3′-MEMA in urine samples of all participants collected after the ME-containing meal. Excretion was maximal between 2 and 6 h after the meal and was completed within about 12 h (concentrations below the limit of detection). Excreted amounts were only between 1 and 85 ppm of the ME intake, indicating that the ultimate genotoxicant, 1′-sulfooxy-ME, is formed to a subordinate extent or is not efficiently detoxified by glutathione conjugation and subsequent conversion to mercapturic acids. Both explanations may apply cumulatively, with the ubiquitous detection of ME DNA adducts in human lung and liver specimens arguing against an extremely low formation of 1′-sulfooxy-ME. Taken together, we hereby present the first noninvasive human biomarker reflecting an internal exposure toward reactive ME species

    An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phytohormones are the key metabolites participating in the regulation of multiple functions of plant organism. Among them, jasmonates, as well as abscisic and salicylic acids are responsible for triggering and modulating plant reactions targeted against pathogens and herbivores, as well as resistance to abiotic stress (drought, UV-irradiation and mechanical wounding). These factors induce dramatic changes in phytohormone biosynthesis and transport leading to rapid local and systemic stress responses. Understanding of underlying mechanisms is of principle interest for scientists working in various areas of plant biology. However, highly sensitive, precise and high-throughput methods for quantification of these phytohormones in small samples of plant tissues are still missing.</p> <p>Results</p> <p>Here we present an LC-MS/MS method for fast and highly sensitive determination of jasmonates, abscisic and salicylic acids. A single-step sample preparation procedure based on mixed-mode solid phase extraction was efficiently combined with essential improvements in mobile phase composition yielding higher efficiency of chromatographic separation and MS-sensitivity. This strategy resulted in dramatic increase in overall sensitivity, allowing successful determination of phytohormones in small (less than 50 mg of fresh weight) tissue samples. The method was completely validated in terms of analyte recovery, sensitivity, linearity and precision. Additionally, it was cross-validated with a well-established GC-MS-based procedure and its applicability to a variety of plant species and organs was verified.</p> <p>Conclusion</p> <p>The method can be applied for the analyses of target phytohormones in small tissue samples obtained from any plant species and/or plant part relying on any commercially available (even less sensitive) tandem mass spectrometry instrumentation.</p

    The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites

    Get PDF
    BACKGROUND: Type VI glandular trichomes represent the most abundant trichome type on leaves and stems of tomato plants and significantly contribute to herbivore resistance, particularly in the wild species. Despite this, their development has been poorly studied so far. The goal of this study is to fill this gap. Using a variety of cell imaging techniques, a detailed record of the anatomy and developmental stages of type VI trichomes in the cultivated tomato (Solanum lycopersicum) and in a related wild species (S. habrochaites) is provided. RESULTS: In both species, the development of these structures follows a highly reproducible cell division pattern. The two species differ in the shape of the trichome head which is round in S. habrochaites and like a four-leaf clover in S. lycopersicum, correlating with the presence of a large intercellular cavity in S. habrochaites where the produced metabolites accumulate. In both species, the junction between the intermediate cell and the four glandular cells constitute a breaking point facilitating the decapitation of the trichome and thereby the quick release of the metabolites. A strongly auto-fluorescent compound transiently accumulates in the early stages of development suggesting a potential role in the differentiation process. Finally, immuno-labelling with antibodies recognizing specific cell wall components indicate a key role of pectin and arabinogalactan components in the differentiation of type VI trichomes. CONCLUSIONS: Our observations explain the adaptive morphologies of type VI trichomes for metabolite storage and release and provide a framework for further studies of these important metabolic cellular factories. This is required to better exploit their potential, in particular for the breeding of pest resistance in tomato
    corecore