134 research outputs found

    Nonlinear screening and stopping power in two-dimensional electron gases

    Get PDF
    We have used density functional theory to study the nonlinear screening properties of a two-dimensional (2D) electron gas. In particular, we consider the screening of an external static point charge of magnitude Z as a function of the distance of the charge from the plane of the gas. The self-consistent screening potentials are then used to determine the 2D stopping power in the low velocity limit based on the momentum transfer cross-section. Calculations as a function of Z establish the limits of validity of linear and quadratic response theory calculations, and show that nonlinear screening theory already provides significant corrections in the case of protons. In contrast to the 3D situation, we find that the nonlinearly screened potential supports a bound state even in the high density limit. This behaviour is elucidated with the derivation of a high density screening theorem which proves that the screening charge can be calculated perturbatively in the high density limit for arbitrary dimensions. However, the theorem has particularly interesting implications in 2D where, contrary to expectations, we find that perturbation theory remains valid even when the perturbing potential supports bound states.Comment: 23 pages, 15 figures in RevTeX

    Exotic behavior and crystal structures of calcium under pressure

    Full text link
    Experimental studies established that calcium undergoes several counterintuitive transitions under pressure: fcc \rightarrow bcc \rightarrow simple cubic \rightarrow Ca-IV \rightarrow Ca-V, and becomes a good superconductor in the simple cubic and higher-pressure phases. Here, using ab initio evolutionary simulations, we explore the behavior of Ca under pressure and find a number of new phases. Our structural sequence differs from the traditional picture for Ca, but is similar to that for Sr. The {\beta}-tin (I41/amd) structure, rather than simple cubic, is predicted to be the theoretical ground state at 0 K and 33-71 GPa. This structure can be represented as a large distortion of the simple cubic structure, just as the higher-pressure phases stable between 71 and 134 GPa. The structure of Ca-V, stable above 134 GPa, is a complex host-guest structure. According to our calculations, the predicted phases are superconductors with Tc increasing under pressure and reaching ~20 K at 120 GPa, in good agreement with experiment

    Plasmon excitation by charged particles interacting with metal surfaces

    Full text link
    Recent experiments (R. A. Baragiola and C. A. Dukes, Phys. Rev. Lett. {\bf 76}, 2547 (1996)) with slow ions incident at grazing angle on metal surfaces have shown that bulk plasmons are excited under conditions where the ions do not penetrate the surface, contrary to the usual statement that probes exterior to an electron gas do not couple to the bulk plasmon. We here use the quantized hydrodynamic model of the bounded electron gas to derive an explicit expression for the probability of bulk plasmon excitation by external charged particles moving parallel to the surface. Our results indicate that for each q{\bf q} (the surface plasmon wave vector) there exists a continuum of bulk plasmon excitations, which we also observe within the semi-classical infinite-barrier (SCIB) model of the surface.Comment: 4 pages, 3 figures, o appear in Phys. Lett.

    Nesting Induced Peierls-type Instability for Compressed Li-CI16

    Full text link
    Alkalies are considered to be simple metals at ambient conditions. However, recently reported theoretical and experimental results have shown an unexpected and intriguing correlation between complex structures and an enhanced superconducting transition temperature in lithium under pressure. In this article we analyze the pressure induced Fermi surface deformation in bcc lithium, and its relation to the observed cI16 structure. According to our calculations, the Fermi surface becomes increasingly anisotropic with pressure and develops an extended nesting along the bcc [121] direction. This nesting induces a phonon instability of both transverse modes at N, so that a Peierls-type mechanism is proposed to explain the stability of Li-cI16.Comment: Proceedings of Fukuoka 2006 Conference on Novel Pressure-induced Phenomena in Condensed Matter Systems. To be published in J. Phys. Soc. Jpn. 2 pages and 3 figure

    Quadratic electronic response of a two-dimensional electron gas

    Full text link
    The electronic response of a two-dimensional (2D) electron system represents a key quantity in discussing one-electron properties of electrons in semiconductor heterojunctions, on the surface of liquid helium and in copper-oxide planes of high-temperature superconductors. We here report an evaluation of the wave-vector and frequency dependent dynamical quadratic density-response function of a 2D electron gas (2DEG), within a self-consistent field approximation. We use this result to find the Z13Z_1^3 correction to the stopping power of a 2DEG for charged particles moving at a fixed distance from the plane of the 2D sheet, Z1Z_1 being the projectile charge. We reproduce, in the high-density limit, previous full nonlinear calculations of the stopping power of a 2DEG for slow antiprotons, and we go further to calculate the Z13Z_1^3 correction to the stopping power of a 2DEG for a wide range of projectile velocities. Our results indicate that linear response calculations are, for all projectile velocities, less reliable in two dimensions than in three dimensions.Comment: 17 pages, 5 figures, to appear in Phys. Rev.

    Theoretical study of topological properties of ferromagnetic pyrite CoS<sub>2</sub>

    Get PDF
    Since the discovery of the first topological material 15 years ago, the search for material realizations of novel topological phases has become the driving force of the field. While oftentimes we search for new materials, we forget that well established materials can also display very interesting topological properties. In this work, we revisit CoS2, a metallic ferromagnetic pyrite that has been extensively studied in the literature due to its magnetic properties. We study the topological features of its electronic band structure and identify Weyl nodes and nodal lines, as well as a symmetry-protected fourfold fermion close to the Fermi level. Looking at different surface cleavage planes, we observe both spin polarized Fermi arcs in the majority channel and drumhead states. These findings suggest that CoS2 is a promising platform to study topological phenomena, as well as a good candidate for spintronic applications

    First-Principles Simulations of Lithium Melting: Stability of the bcc Phase Close to Melting

    Get PDF
    We report large-scale first-principles simulations of melting of four different phases of Li at pressures ranging from 0 to 50 GPa. We find excellent agreement with existing experimental data at low pressures, and confirm that above 10 GPa the melting line develops a negative slope, in parallel to what occurs for Na at 30 GPa. Surprisingly, our results indicate that the melting temperature of the bcc phase is always higher than that of fcc Li, suggesting the intriguing possibility of the existence of a narrow field of bcc stability separating the fcc and liquid phases, as predicted by Alexander and McTague [Phys. Rev. Lett. 41, 702 (1978)]
    • …
    corecore