476 research outputs found

    Macro- and Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives

    Get PDF
    The number of scientists and tourists visiting Antarctica is on the rise and, despite the management framework for environmental protection, some coastal areas, particularly in the Antarctic Peninsula region, are affected by plastic contamination. The few data available on the occurrence of microplastics (<5 mm) are difficult to compare, due to the different methodologies used in monitoring studies. However, indications are emerging to guide future research and to implement environmental protocols. In the surface and subsurface waters of the Southern Ocean, plastic debris >300 p.m appears to be scarce and far less abundant than paint chips released from research vessels. Yet, near some coastal scientific stations, the fragmentation and degradation of larger plastic items, as well as microbeads and microfibers released into wastewater from personal care products and laundry, could potentially affect marine organisms. Some studies indicate that, through long-range atmospheric transport, plastic fibers produced on other continents can be deposited in Antarctica. Drifting plastic debris can also cross the Polar Front, with the potential to carry alien fouling organisms into the Southern Ocean. Sea ice dynamics appear to favor the uptake of microplastics by ice algae and Antarctic krill, the key species in the Antarctic marine food web. Euphausia superba apparently has the ability to fragment and expel ingested plastic particles at the nanoscale. However, most Antarctic organisms are endemic species, with unique ecophysiological adaptations to extreme environmental conditions and are likely highly sensitive to cumulative stresses caused by climate change, microplastics and other anthropogenic disturbances. Although there is limited evidence to date that micro- and nanoplastics have direct biological effects, our review aims at raising awareness of the problem and, in order to assess the real potential impact of microplastics in Antarctica, underlines the urgency to fill the methodological gaps for their detection in all environmental matrices, and to equip scientific stations and ships with adequate wastewater treatment plants to reduce the release of microfibers

    Pioneer settlement of the cold-water coral Desmophyllum dianthus (Esper, 1794) on plastic

    Get PDF
    Larval settlement is a critical step for sessile benthic species such as corals, whose ability to thrive on diverse natural and anthropogenic substrates may lead to a competitive advantage in the colonization of new environments with respect to a narrow tolerance for a specific kind of substratum. Plastic debris, widespread in marine waters, provides a large, motile, and solid substratum supporting a highly diverse biological community. Here we present the first observation of a floating plastic bottle colonized by the deep-sea coral Desmophyllum dianthus. The density pattern and co-occurring species composition suggest a pioneer behavior of this coral species, whose peculiar morphologic plasticity response when interacting with the plastic substrate (i.e., low density polyethylene) has not been observed before. The tolerance of D. dianthus for such plastic substrate may affect ecological processes in deep water environments, disrupting interspecific substrate competition in the benthic community

    The Role of Vasospasm and Microcirculatory Dysfunction in Fluoropyrimidine-Induced Ischemic Heart Disease

    Get PDF
    Cardiovascular diseases and cancer are the leading cause of morbidity and mortality globally. Cardiotoxicity from chemotherapeutic agents results in substantial morbidity and mortality in cancer survivors and patients with active cancer. Cardiotoxicity induced by 5-fluorouracil (5-FU) has been well established, yet its incidence, mechanisms, and manifestation remain poorly defined. Ischemia secondary to coronary artery vasospasm is thought to be the most frequent cardiotoxic effect of 5-FU. The available evidence of 5-FU-induced epicardial coronary artery spasm and coronary microvascular dysfunction suggests that endothelial dysfunction or primary vascular smooth muscle dysfunction (an endothelial-independent mechanism) are the possible contributing factors to this form of cardiotoxicity. In patients with 5-FU-related coronary artery vasospasm, termination of chemotherapy and administration of nitrates or calcium channel blockers may improve ischemic symptoms. However, there are variable results after administration of nitrates or calcium channel blockers in patients treated with 5-FU presumed to have myocardial ischemia, suggesting mechanisms other than impaired vasodilatory response. Clinicians should investigate whether chest pain and ECG changes can reasonably be attributed to 5-FU-induced cardiotoxicity. More prospective data and clinical randomized trials are required to understand and mitigate potentially adverse outcomes from 5-FU-induced cardiotoxicity

    Nanoplastics affect moulting and faecal pellet sinking in Antarctic krill (Euphausia superba) juveniles

    Get PDF
    Plastic debris has been identified as a potential threat to Antarctic marine ecosystems, however, the impact of nanoplastics (<1 μm) is currently unexplored. Antarctic krill (Euphausia superba) is a keystone species of Southern Ocean pelagic ecosystems, which plays a central role in the Antarctic food webs and carbon (C) cycle. Krill has been shown to rapidly fragment microplastic beads through the digestive system, releasing nanoplastics with unknown toxicological effects. Here we exposed krill juveniles to carboxylic (COOH, anionic) and amino- (NH2, cationic) polystyrene nanoparticles (PS NPs) and we investigated lethal and sub-lethal endpoints after 48 h. The analysis of PS NP suspensions in Antarctic sea water (SW) media showed that PS-COOH formed large agglomerates (1043 ± 121 nm), while PS-NH2 kept their nominal size (56.8 ± 3 nm) during the exposure time. After 48 h, no mortality was found but increase in exuviae production (12.6 ± 1.3%) and reduced swimming activity were observed in juveniles exposed to PS-NH2. The microbial community composition in SW supports the release of krill moults upon PS NP exposure and stimulates further research on the pivotal role of krill in shaping Southern Ocean bacterial assemblages. The presence of fluorescent signal in krill faecal pellets (FPs) confirmed the waterborne ingestion and egestion of PS-COOH at 48 h of exposure. Changes in FP structure and properties were also associated to the incorporation of PS NPs regardless of their surface charge. The effects of PS NPs on krill FP properties were compared to Control 0 h as a reference for full FPs (plastic vs food) and Control 48 h as a reference for more empty-like FPs (plastic vs lack of food). Exposure to PS NPs led to a FP sinking rate comparable to Control 48 h, but significantly lower than Control 0 h (58.40 ± 23.60 m/d and 51.23 ± 28.60 m/d for PS-COOH and PS-NH2; 168.80 ± 74.58 m/d for Control 0 h). Considering the important role played by krill in the food web and C export in the Southern Ocean, the present study provides cues about the potential impact of nanoplastics on Antarctic pelagic ecosystems and their biogeochemical cycles

    TrkB signaling directs the incorporation of newly generated periglomerular cells in the adult olfactory bulb.

    Get PDF
    In the adult rodent brain, the olfactory bulb (OB) is continuously supplied with new neurons which survival critically depends on their successful integration into pre-existing networks. Yet, the extracellular signals that determine the selection which neurons will be ultimately incorporated into these circuits are largely unknown. Here, we show that immature neurons express the catalytic form of the brain-derived neurotrophic factor receptor TrkB [full-length TrkB (TrkB-FL)] only after their arrival in the OB, at the time when inte-gration commences. To unravel the role of TrkB signaling in newborn neurons, we conditionally ablated TrkB-FL in mice via Cre expression in adult neural stem and progenitor cells. TrkB-deficient neurons displayed a marked impairment in dendritic arborization and spine growth. By selectively manipulating the signaling pathways initiated by TrkB in vivo, we identified the transducers Shc/PI3K to be required for dendritic growth, whereas the activation of phospholipase C-was found to be responsible for spine formation. Further-more, long-term genetic fate mapping revealed that TrkB deletion severely compromised the survival of new dopaminergic neurons, leading to a substantial reduction in the overall number of adult-generated periglomerular cells (PGCs), but not of granule cells (GCs). Surprisingly, this loss of dopaminergic PGCs was mirrored by a corresponding increase in the number of calretinin PGCs, suggesting that distinct subsets of adult-born PGCs may respond differentially to common extracellular signals. Thus, our results identify TrkB signaling to be essential for balancing the incorporation of defined classes of adult-born PGCs and not GCs, reflecting their different mode of integration in the OB. \ua9 2013 the authors

    Relative influence of environmental factors on biodiversity and behavioural traits of a rare mesopelagic fish, Trachipterus trachypterus (gmelin, 1789), in a continental shelf front of the Mediterranean Sea

    Get PDF
    Coastal environments can be influenced by water body masses with particular physical, chemical, and biological properties that create favourable conditions for the development of unique planktonic communities. In this study, we investigated a continental shelf front at Ponza Island (Tyrrhenian Sea) and discussed its diversity and complexity in relation to major environmental parameters. Moon phase and current direction were found to play a significant role in shaping species abundance and behaviour. During in situ observations, we also provided the first data on the behaviour of juveniles of a rare mesopelagic species, Trachipterus trachypterus, suggesting the occurrence of Batesian mimicry

    Spatiotemporal control of mitochondrial network dynamics in astroglial cells

    Get PDF
    Mitochondria are increasingly recognized for playing important roles in regulating the evolving metabolic state of mammalian cells. This is particularly true for nerve cells, as dysregulation of mitochondrial dynamics are invariably associated with a number of neuropathies. Accumulating evidence now reveals that changes in mitochondrial dynamics and structure may play equally important roles also in the cell biology of astroglial cells. Astroglial cells display a significant heterogeneity in their morphology and specialized functions across the different brain regions, however besides fundamental differences they seem to share a surprisingly complex meshwork of mitochondria, which is highly suggestive of tightly regulated mechanisms that contribute to maintain this unique architecture. Here, we summarize recent work performed in astrocytes in situ indicating that this may indeed be the case, with astrocytic mitochondrial networks shown to experience rapid dynamic changes in response to defined external cues. Although the mechanisms underlying this degree of mitochondrial re-shaping are far from being understood, recent data suggest that they may contribute to demarcate astrocyte territories undergoing key signalling and metabolic functions

    Case Report: Heterozygous Germline Variant in EIF6 Additional to Biallelic SBDS Pathogenic Variants in a Patient With Ribosomopathy Shwachman–Diamond Syndrome

    Get PDF
    Background: Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive ribosomopathy mainly characterized by exocrine pancreatic insufficiency, skeletal alterations, neutropenia, and a relevant risk of hematological transformation. At least 90% of SDS patients have pathogenic variants in SBDS, the first gene associated with the disease with very low allelic heterogeneity; three variants, derived from events of genetic conversion between SBDS and its pseudogene, SBDSP1, provided the alleles observed in about 62% of SDS patients.Methods: We performed a reanalysis of the available WES files of a group of SDS patients with biallelic SBDS pathogenic variants, studying the results by next bioinformatic and protein structural analysis. Parallelly, careful clinical attention was given to the patient focused in this study.Results: We found and confirmed in one SDS patient a germline heterozygous missense variant (c.100T&gt;C; p.Phe34Leu) in the EIF6 gene. This variant, inherited from his mother, has a very low frequency, and it is predicted as pathogenic, according to several in silico prediction tools. The protein structural analysis also envisages the variant could reduce the binding to the nascent 60S ribosomal.Conclusion: This study focused on the hypothesis that the EIF6 germline variant mimics the effect of somatic deletions of chromosome 20, always including the locus of this gene, and similarly may rescue the ribosomal stress and ribosomal dysfunction due to SBDS mutations. It is likely that this rescue may contribute to the stable and not severe hematological status of the proband, but a definite answer on the role of this EIF6 variant can be obtained only by adding a functional layer of evidence. In the future, these results are likely to be useful for selected cases in personalized medicine and therapy

    Cytokine Production but Lack of Proliferation in Peripheral Blood Mononuclear Cells from Chronic Chagas' Disease Cardiomyopathy Patients in Response to T. cruzi Ribosomal P Proteins

    Get PDF
    Background:Trypanosoma cruzi ribosomal P proteins, P2β and P0, induce high levels of antibodies in patients with chronic Chagas' disease Cardiomyopathy (CCC). It is well known that these antibodies alter the beating rate of cardiomyocytes and provoke apoptosis by their interaction with β1-adrenergic and M2-muscarinic cardiac receptors. Based on these findings, we decided to study the cellular immune response to these proteins in CCC patients compared to non-infected individuals.Methodology/Principal findings:We evaluated proliferation, presence of surface activation markers and cytokine production in peripheral blood mononuclear cells (PBMC) stimulated with P2β, the C-terminal portion of P0 (CP0) proteins and T. cruzi lysate from CCC patients predominantly infected with TcVI lineage. PBMC from CCC patients cultured with P2β or CP0 proteins, failed to proliferate and express CD25 and HLA-DR on T cell populations. However, multiplex cytokine assays showed that these antigens triggered higher secretion of IL-10, TNF-α and GM-CSF by PBMC as well as both CD4+ and CD8+ T cells subsets of CCC subjects. Upon T. cruzi lysate stimulation, PBMC from CCC patients not only proliferated but also became activated within the context of Th1 response. Interestingly, T. cruzi lysate was also able to induce the secretion of GM-CSF by CD4+ or CD8+ T cells.Conclusions/Significance:Our results showed that although the lack of PBMC proliferation in CCC patients in response to ribosomal P proteins, the detection of IL-10, TNF-α and GM-CSF suggests that specific T cells could have both immunoregulatory and pro-inflammatory potential, which might modulate the immune response in Chagas' disease. Furthermore, it was possible to demonstrate for the first time that GM-CSF was produced by PBMC of CCC patients in response not only to recombinant ribosomal P proteins but also to parasite lysate, suggesting the value of this cytokine to evaluate T cells responses in T. cruzi infection.Fil: Longhi, Silvia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Atienza, Augusto. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Perez Prados, Graciela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Juan A. Fernández"; ArgentinaFil: Buying, Alcinette. Torrey Pines Institute for Molecular Studies; Estados UnidosFil: Balouz, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Buscaglia, Carlos Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Santos, Radleigh. Torrey Pines Institute for Molecular Studies; Estados UnidosFil: Tasso, Laura Mónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Bonato, Ricardo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Chiale, Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Pinilla, Clemencia. Torrey Pines Institute for Molecular Studies; Estados UnidosFil: Judkowski, Valeria A.. Torrey Pines Institute for Molecular Studies; Estados UnidosFil: Gomez, Karina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentin
    • …
    corecore