304 research outputs found
Risk factors for intrauterine growth retardation: results of a community-based study from Karachi
There is a serious lack of community-based information on low birthweight or intrauterine growth retardation from Pakistan. A community based prospective study was conducted in four squatter settlements of Karachi, to examine the prevalence and risk factors for adverse pregnancy outcome. This paper reports on the prevalence and risk factors for intrauterine growth retardation (age) among 755 singleton births. The incidence of intrauterine growth retardation was 25.4% (192 intrauterine growth retarded and 563 appropriate for gestational age). Major socioeconomic risk factors identified were low maternal education (RR = 1.4, 95% CI = 1.0,2.1) and poor housing material (RR = 1.7, 95% CI = 1.0,3.0). Among the significant biologic factors, primiparity (RR = 1.9, 95% CI = 1.4,2.7), consanguinity (RR = 1.4, 95% CI = 1.4,2.7), consanguinity (RR = 1.4, 95% CI = 1.1,1.8), short birth to CI = 1.1,2.1), short stature (RR = 2.2, 95% CI = 1.6,3.0), low maternal weight (RR = 2.0, 95% CI = 1.6,2.5) and non-vegetarian diet (RR = 2.3, 95% CI = 1.3,4.2) were especially important. Investigations to assess the adverse mortality and morbidity effects of intrauterine growth retardation are ongoing
Quality of private and public ambulatory health care in low and middle income countries: systematic review of comparative studies
Paul Garner and colleagues conducted a systematic review of 80 studies to compare
the quality of private versus public ambulatory health care in low- and
middle-income countries
Recommended from our members
Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sNN= 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μB> 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter
An unusual cause of granulomatous disease
BACKGROUND: Chronic granulomatous disease (CGD) is an inherited disorder of phagocytic cells caused by an inability to generate active microbicidal oxygen species required kill certain types of fungi and bacteria. This leads to recurrent life-threatening bacterial and fungal infections with tissue granuloma formation. CASE PRESENTATION: We describe a case of X-linked Chronic granulomatous disease (CGD) diagnosed in an 18-year-old male. He initially presented with granulomatous disease mimicking sarcoidosis and was treated with corticosteroids. He subsequently developed Burkholderia cepacia complex pneumonia and further investigation confirmed a diagnosis of CGD. CONCLUSION: Milder phenotypes of CGD are now being recognised. CGD should be considered in patients of any age with granulomatous diseases, especially if there is a history of recurrent or atypical infection
Graduates
https://thekeep.eiu.edu/commencement_fall2015/1029/thumbnail.jp
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Comparative Performance of Private and Public Healthcare Systems in Low- and Middle-Income Countries: A Systematic Review
A systematic review conducted by Sanjay Basu and colleagues reevaluates the evidence relating to comparative performance of public versus private sector healthcare delivery in low- and middle-income countries
- …