970 research outputs found

    The emergent curriculum: navigating a complex course between unguided learning and planned enculturation

    Get PDF
    This study uses the ‘logic’ of emergence to rethink the practice and purposes of modern Western schooling which, conventionally, is organized around a representational epistemology and aims to enculture the student into a particular way of being. The idea of ‘planned enculturation’ is, however, problematic for contemporary multicultural societies for it raises the question of which or whose culture should be promoted through schooling. The authors argue that emergentist challenges to representational epistemology have not released schooling from its problematic function of planned enculturation. However, if the logic of emergence is applied not only to knowledge but also to human subjectivity then the educational problem of planned enculturation disappears. When emergentist logic is applied in this double sense, it becomes possible to understand the primary responsibility of the educator not as a responsibility to promote a particular way of being, but as a responsibility to the singularity and uniqueness of each individual student. If this is what counts as ‘educational responsibility’ then this would distinguish ‘responsible’ educational practices from unguided learning on the one hand and practices of planned enculturation/socialization (training) on the other

    Helping education undergraduates to use appropriate criteria for evaluating accounts of motivation

    Get PDF
    The aim of the study was to compare students in a control group with those in a treatment group with respect to evaluative comments on psychological accounts of motivation. The treatment group systematically scrutinized the nature and interpretation of evidence that supported different accounts, and the assumptions, logic, coherence and clarity of accounts. Content analysis of 74 scripts (using three categories) showed that the control group students made more assertions than either evidential or evaluative points, whereas the treatment group used evaluative statements as often as they used assertion. The findings provide support for privileging activities that develop understanding of how knowledge might be contested, and suggest a need for further research on pedagogies to serve this end. The idea is considered that such understanding has a pivotal role in the development of critical thinking

    Learning to Teach Argumentation: Research and development in the science classroom

    Get PDF
    The research reported in this study focuses on an investigation into the teaching of argumentation in secondary science classrooms. Over a one-year period, a group of 12 teachers from schools in the greater London area attended a series of workshops to develop materials and strategies to support the teaching of argumentation in scientific contexts. Data were collected at the beginning and end of the year by audio and video recording lessons where the teachers attempted to implement argumentation. To assess the quality of argumentation, analytical tools derived from Toulmin's argument pattern (TAP) were developed and applied to classroom transcripts. Analysis shows there was development in teachers' use of argumentation across the year. Results indicate that the pattern of use of argumentation is teacher-specific, as is the nature of change. To inform future professional development programmes, transcripts of five teachers, three showing a significant change and two no change, were analysed in more detail to identify features of teachers' oral contributions that facilitated and supported argumentation. The analysis showed that all teachers attempted to encourage a variety of processes involved in argumentation and that the teachers whose lessons included the highest quality of argumentation (TAP analysis) also encouraged higher order processes in their teaching. The analysis of teachers' facilitation of argumentation has helped to guide the development of in-service materials and to identify the barriers to learning in the professional development of less experienced teachers

    Development of a novel 3D culture system for screening features of a complex implantable device for CNS repair

    Get PDF
    Tubular scaffolds which incorporate a variety of micro- and nanotopographies have a wide application potential in tissue engineering especially for the repair of spinal cord injury (SCI). We aim to produce metabolically active differentiated tissues within such tubes, as it is crucially important to evaluate the biological performance of the three-dimensional (3D) scaffold and optimize the bioprocesses for tissue culture. Because of the complex 3D configuration and the presence of various topographies, it is rarely possible to observe and analyze cells within such scaffolds in situ. Thus, we aim to develop scaled down mini-chambers as simplified in vitro simulation systems, to bridge the gap between two-dimensional (2D) cell cultures on structured substrates and three-dimensional (3D) tissue culture. The mini-chambers were manipulated to systematically simulate and evaluate the influences of gravity, topography, fluid flow, and scaffold dimension on three exemplary cell models that play a role in CNS repair (i.e., cortical astrocytes, fibroblasts, and myelinating cultures) within a tubular scaffold created by rolling up a microstructured membrane. Since we use CNS myelinating cultures, we can confirm that the scaffold does not affect neural cell differentiation. It was found that heterogeneous cell distribution within the tubular constructs was caused by a combination of gravity, fluid flow, topography, and scaffold configuration, while cell survival was influenced by scaffold length, porosity, and thickness. This research demonstrates that the mini-chambers represent a viable, novel, scale down approach for the evaluation of complex 3D scaffolds as well as providing a microbioprocessing strategy for tissue engineering and the potential repair of SCI

    Conceptual learning : the priority for higher education

    Get PDF
    The common sense notion of learning as the all-pervasive acquisition of new behaviour and knowledge, made vivid by experience, is an incomplete characterisation, because it assumes that the learning of behaviour and the learning of knowledge are indistinguishable, and that acquisition constitutes learning without reference to transfer. A psychological level of analysis is used to argue that conceptual learning should have priority in higher education

    Global ocean heat content in the Last Interglacial

    Get PDF
    The Last Interglacial (129-116 ka) represents one of the warmest climate intervals of the last 800,000 years and the most recent time when sea level was meters higher than today. However, the timing and magnitude of peak warmth varies between reconstructions, and the relative importance of individual sources contributing to elevated sea level (mass gain versus seawater expansion) during the Last Interglacial remains uncertain. Here we present the first mean ocean temperature record for this interval from noble gas measurements in ice cores and constrain the thermal expansion contribution to sea level. Mean ocean temperature reaches its maximum value of 1.1±0.3°C warmer-than-modern at the end of the penultimate deglaciation at 129 ka, resulting in 0.7±0.3m of elevated sea level, relative to present. However, this maximum in ocean heat content is a transient feature; mean ocean temperature decreases in the first several thousand years of the interglacial and achieves a stable, comparable-to-modern value by ~127 ka. The synchroneity of the peak in mean ocean temperature with proxy records of abrupt transitions in oceanic and atmospheric circulation suggests that the mean ocean temperature maximum is related to the accumulation of heat in the ocean interior during the preceding period of reduced overturning circulation

    Developing reading-writing connections; the impact of explicit instruction of literary devices on the quality of children's narrative writing

    Get PDF
    The purpose of this collaborative schools-university study was to investigate how the explicit instruction of literary devices during designated literacy sessions could improve the quality of children's narrative writing. A guiding question for the study was: Can children's writing can be enhanced by teachers drawing attention to the literary devices used by professional writers or “mentor authors”? The study was conducted with 18 teachers, working as research partners in nine elementary schools over one school year. The research group explored ways of developing children as reflective authors, able to draft and redraft writing in response to peer and teacher feedback. Daily literacy sessions were complemented by weekly writing workshops where students engaged in authorial activity and experienced writers' perspectives and readers' demands (Harwayne, 1992; May, 2004). Methods for data collection included video recording of peer-peer and teacher-led group discussions and audio recording of teacher-child conferences. Samples of children's narrative writing were collected and a comparison was made between the quality of their independent writing at the beginning and end of the research period. The research group documented the importance of peer-peer and teacher-student discourse in the development of children's metalanguage and awareness of audience. The study suggests that reading, discussing, and evaluating mentor texts can have a positive impact on the quality of children's independent writing

    A State-Dependent Quantification of Climate Sensitivity Based On Paleodata of the Last 2.1 Million Years

    Get PDF
    The evidence from both data and models indicates that specific equilibrium climate sensitivity S[X]—the global annual mean surface temperature change (ΔTg) as a response to a change in radiative forcing X (ΔR[X])—is state dependent. Such a state dependency implies that the best fit in the scatterplot of ΔTg versus ΔR[X] is not a linear regression but can be some nonlinear or even nonsmooth function. While for the conventional linear case the slope (gradient) of the regression is correctly interpreted as the specific equilibrium climate sensitivity S[X], the interpretation is not straightforward in the nonlinear case. We here explain how such a state-dependent scatterplot needs to be interpreted and provide a theoretical understanding—or generalization—how to quantify S[X] in the nonlinear case. Finally, from data covering the last 2.1 Myr we show that—due to state dependency—the specific equilibrium climate sensitivity which considers radiative forcing of CO2 and land ice sheet (LI) albedo, math formula, is larger during interglacial states than during glacial conditions by more than a factor 2
    • 

    corecore