810 research outputs found

    Creating an Effective Social-Emotional Learning Program at the High School Level: A School Improvement Plan

    Get PDF
    This school improvement plan details the importance of creating an effective social and emotional learning (SEL) program for high school students in the wake of the COVID-19 pandemic and the current mental health crisis among teenagers. Current research points to SEL programs for improvement in nearly all areas for students, whether it be academic achievement, attitude and behavior, resilience, or overall connectedness with peers; furthermore, research also indicates decreases in student aggression and emotional distress. With those findings in mind, this plan was created to focus on the improvement of two specific SEL skills: social awareness and relationship skills. The plan outlines a two-year initiative to educate staff and students about SEL, to develop an SEL curriculum appropriate for high school students, and to foster a positive school culture and climate

    Plant Science Building, College of Agriculture, Clemson University

    Get PDF

    Solar convection and magneto-convection simulations

    Get PDF
    Magneto-convection simulations with two scenarios have been performed: in one, horizontal magnetic field is advected into the computational domain by fluid entering at the bottom. In the other, an initially uniform vertical magnetic field is imposed on a snapshot of non-magnetic convection and allowed to evolve. In both cases, the field is swept into the intergranular lanes and the boundaries of the underlying mesogranules. The largest field concentrations at the surface reach pressure balance with the surrounding gas. They suppress both horizontal and vertical flows, which reduces the heat transport. They cool, become evacuated and their optical depth unity surface is depressed by several hundred kilometers. Micropores form, typically where a small granule disappears and surrounding flux tubes squeeze into its previous location

    The Three-dimensional Evolution of Rising, Twisted Magnetic Flux Tubes in a Gravitationally Stratified Model Convection Zone

    Get PDF
    We present three-dimensional numerical simulations of the rise and fragmentation of twisted, initially horizontal magnetic flux tubes which evolve into emerging Omega-loops. The flux tubes rise buoyantly through an adiabatically stratified plasma that represents the solar convection zone. The MHD equations are solved in the anelastic approximation, and the results are compared with studies of flux tube fragmentation in two dimensions. We find that if the initial amount of field line twist is below a critical value, the degree of fragmentation at the apex of a rising Omega-loop depends on its three-dimensional geometry: the greater the apex curvature of a given Omega-loop, the lesser the degree of fragmentation of the loop as it approaches the photosphere. Thus, the amount of initial twist necessary for the loop to retain its cohesion can be reduced substantially from the two-dimensional limit. The simulations also suggest that as a fragmented flux tube emerges through a relatively quiet portion of the solar disk, extended crescent-shaped magnetic features of opposite polarity should form and steadily recede from one another. These features eventually coalesce after the fragmented portion of the Omega-loop emerges through the photosphere.Comment: 17 pages, 17 figures, uses AAS LaTeX macros v5.0. ApJ, in pres

    Estimating Electric Fields from Vector Magnetogram Sequences

    Full text link
    Determining the electric field (E-field) distribution on the Sun's photosphere is essential for quantitative studies of how energy flows from the Sun's photosphere, through the corona, and into the heliosphere. This E-field also provides valuable input for data-driven models of the solar atmosphere and the Sun-Earth system. We show how Faraday's Law can be used with observed vector magnetogram time series to estimate the photospheric E-field, an ill-posed inversion problem. Our method uses a "poloidal-toroidal decomposition" (PTD) of the time derivative of the vector magnetic field. The PTD solutions are not unique; the gradient of a scalar potential can be added to the PTD E-field without affecting consistency with Faraday's Law. We present an iterative technique to determine a potential function consistent with ideal MHD evolution; but this E-field is also not a unique solution to Faraday's Law. Finally, we explore a variational approach that minimizes an energy functional to determine a unique E-field, similar to Longcope's "Minimum Energy Fit". The PTD technique, the iterative technique, and the variational technique are used to estimate E-fields from a pair of synthetic vector magnetograms taken from an MHD simulation; and these E-fields are compared with the simulation's known electric fields. These three techniques are then applied to a pair of vector magnetograms of solar active region NOAA AR8210, to demonstrate the methods with real data.Comment: 41 pages, 10 figure

    Subsurface magnetic field and flow structure of simulated sunspots

    Full text link
    We present a series of numerical sunspot models addressing the subsurface field and flow structure in up to 16 Mm deep domains covering up to 2 days of temporal evolution. Changes in the photospheric appearance of the sunspots are driven by subsurface flows in several Mm depth. Most of magnetic field is pushed into a downflow vertex of the subsurface convection pattern, while some fraction of the flux separates from the main trunk of the spot. Flux separation in deeper layers is accompanied in the photosphere with light bridge formation in the early stages and formation of pores separating from the spot at later stages. Over a time scale of less than a day we see the development of a large scale flow pattern surrounding the sunspots, which is dominated by a radial outflow reaching about 50% of the convective rms velocity in amplitude. Several components of the large scale flow are found to be independent from the presence of a penumbra and the associated Evershed flow. While the simulated sunspots lead to blockage of heat flux in the near surface layers, we do not see compelling evidence for a brightness enhancement in their periphery. We further demonstrate that the influence of the bottom boundary condition on the stability and long-term evolution of the sunspot is significantly reduced in a 16 Mm deep domain compared to the shallower domains considered previously.Comment: 20 pages, 14 figures, 4 animations, accepted for publication in Ap

    Mechanism of spontaneous formation of stable magnetic structures on the Sun

    Full text link
    One of the puzzling features of solar magnetism is formation of long-living compact magnetic structures; such as sunspots and pores, in the highly turbulent upper layer of the solar convective zone. We use realistic radiative 3D MHD simulations to investigate the interaction between magnetic field and turbulent convection. In the simulations, a weak vertical uniform magnetic field is imposed in a region of fully developed granular convection; and the total magnetic flux through the top and bottom boundaries is kept constant. The simulation results reveal a process of spontaneous formation of stable magnetic structures, which may be a key to understanding of the magnetic self-organization on the Sun and formation of pores and sunspots. This process consists of two basic steps: 1) formation of small-scale filamentary magnetic structures associated with concentrations of vorticity and whirlpool-type motions, and 2) merging of these structures due to the vortex attraction, caused by converging downdrafts around magnetic concentration below the surface. In the resulting large-scale structure maintained by the converging plasma motions, the magnetic field strength reaches ~1.5 kG at the surface and ~6 kG in the interior; and the surface structure resembles solar pores. The magnetic structure remains stable for the whole simulation run of several hours with no sign of decay.Comment: 13 pages, 4 figures, submitted to the Astrophysical Journa
    • …
    corecore