65 research outputs found

    The role of non-uniqueness in the development of vortex breakdown in tubes

    Get PDF
    Numerical solutions of viscous, swirling flows through circular pipes of constant radius and circular pipes with throats have been obtained. Solutions were computed for several values of vortex circulation, Reynolds number and throat/inlet area ratio, under the assumptions of steady flow, rotational symmetry and frictionless flow at the pipe wall. When the Reynolds number is sufficiently large, vortex breakdown occurs abruptly with increased circulation as a result of the existence of non-unique solutions. Solution paths for Reynolds numbers exceeding approximately 1000 are characterized by an ensemble of three inviscid flow types: columnar (for pipes of constant radius), soliton and wavetrain. Flows that are quasi-cylindrical and which do not exhibit vortex breakdown exist below a critical circulation, dependent on the Reynolds number and the throat/inlet area ratio. Wavetrain solutions are observed over a small range of circulation below the critical circulation, while above the critical value, wave solutions with large regions of reversed flow are found that are primarily solitary in nature. The quasi-cylindrical (QC) equations first fail near the critical value, in support of Hall's theory of vortex breakdown (1967). However, the QC equations are not found to be effective in predicting the spatial position of the breakdown structure

    Multifidelity Monte Carlo estimation for large-scale uncertainty propagation

    Get PDF
    One important task of uncertainty quantification is propagating input uncertainties through a system of interest to quantify the uncertainties’ effects on the system outputs; however, numerical methods for uncertainty propagation are often based on Monte Carlo estimation, which can require large numbers of numerical simulations of the numerical model describing the system response to obtain estimates with acceptable accuracies. Thus, if the model is computationally expensive to evaluate, then Monte-Carlo-based uncertainty propagation methods can quickly become computationally intractable. We demonstrate that multifidelity methods can significantly speedup uncertainty propagation by leveraging low-cost low-fidelity models and establish accuracy guarantees by using occasional recourse to the expensive high-fidelity model. We focus on the multifidelity Monte Carlo method, which is a multifidelity approach that optimally distributes work among the models such that the mean-squared error of the multifidelity estimator is minimized for a given computational budget. The multifidelity Monte Carlo method is applicable to general types of low-fidelity models, including projection-based reduced models, data-fit surrogates, response surfaces, and simplified-physics models. We apply the multifidelity Monte Carlo method to a coupled aero-structural analysis of a wing and a flutter problem with a high-aspect-ratio wing. The low-fidelity models are data-fit surrogate models derived with standard procedures that are built in common software environments such as Matlab and numpy/scipy. Our results demonstrate speedups of orders of magnitude compared to using the high-fidelity model alone.United States. Air Force. Office of Scientific Research. Multidisciplinary University Research Initiative (Award FA9550-15-1-0038

    State-space representation of the unsteady aerodynamics of flapping flight

    Get PDF
    A state-space formulation for the aerodynamics of flapping flight is presented. The Duhamel\u27s principle, applied in linear unsteady flows, is extended to non-conventional lift curves to capture the LEV contribution. The aspect ratio effects on the empirical formulae used to predict the static lift due to a stabilized Leading Edge Vortex (LEV) are provided. The unsteady lift due to arbitrary wing motion is generated using the static lift curve. Then, state-space representation for the unsteady lift is derived. The proposed model is validated through a comparison with direct numerical simulations of Navier-Stokes on hovering insects. A comparison with quasi-steady models that capture the LEV contribution is also performed to assess the role of unsteadiness. Similarly, a comparison with classical unsteady approaches is presented to assess the LEV dominance. Finally, a reduced-order model that is more suitable for flight dynamics and control analyses is derived from the full model
    corecore