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A state-space formulation for the aerodynamics of flapping flight is presented. The Duhamel's principle, 
applied in linear unsteady flows, is extended to non-conventional lift curves to capture the LEV 
contribution. The aspect ratio effects on the empirical formulae used to predict the static lift due to 
a stabilized Leading Edge Vortex (LEV) are provided. The unsteady lift due to arbitrary wing motion is 
generated using the static lift curve. Then, state-space representation for the unsteady lift is derived. The 
proposed model is validated through a comparison with direct numerical simulations of Navier-Stokes 
on hovering insects. A comparison with quasi-steady models that capture the LEV contribution is also 
performed to assess the role of unsteadiness. Similarly, a comparison with classical unsteady approaches 
is presented to assess the LEV dominance. Finally, a reduced-order model that is more suitable for flight 
dynamics and control analyses is derived from the full model. 

1. Introduction 

The aerodynamics of flapping flight have been the focus of re­
search investigations for almost a century. The early studies were 
concerned with birds and insect flights and mainly carried out by 
biologists, such as Demoll [12,13]. More recently, there has been 
a significant interest in the modeling and simulation of flapping 
flights for design of micro-air-vehicles (MAVs). Flapping flight of 
MAVs/insects generates an unsteady nonlinear flow field that ex­
ploits non-conventional mechanisms to enhance the aerodynamic 
loads. Almost all of the early trials of explaining insect flight 
have invoked non-conventional high-lift mechanisms. Ellington et 
al. [20] explained how insects exploit the Leading Edge Vortex 
(LEV) as a high-lift mechanism, which is also known to be criti­
cal for lift generation of highly swept and delta wings aircraft. The 
LEV augments the bound vortex on the wing and, as such, the lift 
increases. This phenomenon is similar to the one observed in dy­
namic stall whereby the wing undergoes a rapid variation in the 
angle of attack. Yet, in contrast to dynamic stall, the LEV formed in 
insect flight has stable characteristics. This stability is attributed to 
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an outward spanwise flow that convects the LEV towards the wing 
tip [20,54,53,61] . In the case of highly swept and delta wings, this 
spanwise flow is generated by the free-stream component parallel 
to the highly swept leading edge. In insect flight, similar to he­
licopters and propellers, the rotational motion creates a spanwise 
velocity gradient which, in turn, creates a pressure gradient that 
generates the spanwise flow. 

Although the LEV is known to be the dominant contribution 
in insect flight, Dickinson et al. [15] indicated two other high-lift 
mechanisms, namely the rotational lift and wake-capture effects. 
The rotational lift is mainly due to the wing rotation at the end 
of each half stroke to adjust the angle of attack for the next 
half stroke. This rotational velocity of the wing creates a circula­
tion that induces additional aerodynamic lift. On the other hand, 
Dickinson et al. observed peaks in the generated lift at the begin­
ning of half strokes, when forward speed of the wing is almost 
zero. These peaks could not be explained by the previous two 
mechanisms. Dickinson et al. related these peaks to the lingering 
wake created during the previous half stroke. In addition to the 
non-conventional high-lift mechanisms discussed above, the role 
of unsteady aerodynamics in flapping flight is also quite signifi­
cant. Other flow aspects that affect the aerodynamic loads include 
non-circulatory and viscous friction contributions. Unfortunately, it 
is very difficult to formulate a model for the aerodynamic forces 
that accurately captures all these phenomena without an expen­
sive computational burden. 

Over the two past decades, significant advancements have 
been made towards the understanding and modeling of the 
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Nomenclature

AR Aspect ratio
c Chord length
c Mean chord length
C D Drag coefficient
CL Lift coefficient
CL,s Static lift coefficient
CL Average lift coefficient
CLα Lift curve slope of the three-dimensional wing
C(k) Theodorsen function
D(p) Theodorsen function in the Laplace-domain
k Reduced frequency
� Lift per unit span
�s Static lift per unit span
p Laplace variable
r Distance along the wing span
R Wing radius (length)
Re Reynolds number

S Area of one wing
s, σ Non-dimensional time variables
t, τ Time variables
T , f Flapping period and frequency
U Air speed
W (s) Wagner function
w Wing normal velocity
ω Flapping angular frequency
x̂0 Normalized position of the pitch axis
α Angle of attack
η Pitching angle
ϕ Back and forth flapping angle
ρ Air density
ϑ Plunging angle
LEV Leading Edge Vortex
UVLM The unsteady vortex lattice method

Table 1
The aerodynamic models in the literature that could be applied to hovering MAVs/insects and the physical aspects associated with the aerodynamics of flapping flight that
each of the listed models captures along with the degrees-of-freedom associated with that model. UVLM refers to the unsteady vortex lattice method.

Dickinson et al. [15] Berman and Wang [8] Peters et al. [39,34] UVLM Ansari et al. [5,6] Proposed model

No. degrees-of-freedom low low low high high low
LEV contribution � � × × � �
Unsteadiness × × � � � �
Rotational lift � � � � � �
Added mass � � � � � �
Wake capture (hovering) × × × � � ×
Viscous friction × � × × × ×

aerodynamics of flapping flight. For detailed reviews, the reader is
referred to Mueller [31], Shyy et al. [46], Sane [42], Wang [57], and
Ansari et al. [4]. Taha et al. [50] provided a review for the aero-
dynamic models specifically used in flight dynamics and control
analyses. Table 1 lists the aerodynamic models that are available
in the literature to be applied to hovering MAVs/insects. Also, we
list the physical aspects associated with the aerodynamics of flap-
ping flight that each of the listed models captures along with the
degrees-of-freedom associated with that model. The first two mod-
els have algebraic forms and the third one comprises finite-state
ordinary differential equations. The next two models involve sim-
ulation of the vortex kinematics at many locations on the airfoil
surface and in its wake. Clearly, the first three models have a lower
computational cost than the next two and hence are better-suited
for flight dynamics and control analysis. Wang and Eldredge [59]
proposed a remedy for the high computational cost associated
with Ansari’s model. Instead of shedding constant-strength point
vortices at each time step from both leading and trailing edges,
they shed variable-strength point vortices at larger time lapses.
According to their shedding criterion, the strengths of the point
vortices are determined at each time step by satisfying the Kutta
condition at the edge it has shed from until an extremum value
is reached. Then, the strength of this point vortex is kept con-
stant and a new vortex is shed at this instant. This formulation
greatly reduces the number of degrees-of-freedom. However, there
is still a need to develop an unsteady model in a compact form
that is suitable for aeroelasticity, flight dynamics, and control syn-
thesis. Brunton and Rowley [10] considered Theodorsen’s model of
the lift frequency response [51] and modified its coefficients to be
suitable for low Reynolds number regime. So, their final model has
the same form as Theodorsen’s but with different coefficients (dif-
ferent amplitudes). This cannot account for the LEV effect, which is
our main concern in this work. Thus, it is concluded from Table 1

and the above discussion that there is a need for an aerodynamic
model that captures the dominant LEV contribution along with
the prominent unsteadiness with a feasible number of degrees-
of-freedom so that it could be used in flight dynamics analysis,
control synthesis, optimization, and sensitivity analysis.

More generally, Fig. 1 presents a taxonomy of the flapping flight
regimes. For forward flights with a low reduced frequency k, typ-
ically k < 0.1, the quasi-steady aerodynamics is applicable. For
forward flight with a relatively high k with local angles of at-
tack up to 25◦ , a number of aerodynamic theories can be applied
to capture the unsteadiness with a good accuracy either for two-
dimensional or three-dimensional wings, e.g., Theodorsen [51],
Shwarz and Sohngen (see [9]), Peters et al. [39,34,36,35,37,38],
Jones [24–26], and Reissner [41]. In addition, methodologies such
as the unsteady lifting line theory, the unsteady vortex lattice
method, and the unsteady doublet lattice method can also be used
to capture the unsteady effects on three-dimensional wings. On
the other hand, for hovering with very high flapping frequency ω
relative to the body natural frequency ωn , it is generally assumed
that there is no coupling between the periodic aerodynamic forces
and the body natural modes [50]. As such, the body feels only the
average forces, which might be predicted by the quasi-steady mod-
els that capture the dominant effect (LEV), for example, Dickinson
et al. [15], Pesavento and Wang [33], and Andersen et al. [2,3].
For the middle regimes in Fig. 1, there is no aerodynamic model
that could cover this gap with a feasible computational burden.
The main characteristics of this regime are the LEV contribution,
the prominent unsteadiness, and the coupling between the peri-
odic aerodynamic forces and the body modes. The objective of this
work is to develop a physics-based model in the form of ordinary-
differential equations that describe the lift buildup during the flap-
ping cycle, including the effect of the LEV on the aerodynamic
loads. This model can provide better assessment of the flapping
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Fig. 1. Taxonomy of hovering and forward flight regimes. In forward flight, the reduced frequency k = ωc
2U is the key parameter to identify the region of application for each

aerodynamic model. In hovering, the ratio of the flapping frequency ω to the body natural frequency ωn is used to characterize the flight regimes.

flight dynamic stability, when augmented with the body equations
of motion.

Motivated by developing such a model, we extend the Duhamel
superposition principle, applied in unsteady linear aerodynamics,
to flows with arbitrary CL –α curves. This approach basically uti-
lizes the static lift curve to determine the unsteady lift due to an
arbitrary wing motion. A specific aspect of this work is the use
of the quasi-steady circulation as the aerodynamic forcing input
rather than the angle of attack or the airfoil speed. Hence, the de-
veloped model can be used to predict the temporal lift build up
due to stabilized LEV, including the lag and phase shift associated
with unsteady flows. We embed the effects of aspect ratio in the
empirical formulae used to predict the static lift due to a stabilized
LEV and, then, use them to construct the quasi-steady circulation
(the aerodynamic forcing input to the developed unsteady model).
Finally, a state-space representation of a complete unsteady aero-
dynamic model with application to hovering insects is provided.
Validation of the derived model is performed through a compari-
son of time-histories of the modeled lift with corresponding results
obtained by Sun and Du [49] solving Navier–Stokes equations for
different insects. The results are also compared with those of the
quasi-steady model of Berman and Wang [8] and those of the clas-
sical unsteady models.

2. Extension of Duhamel principle to arbitrary C L –α curves

Because of their ability to capture the unsteady effects in a
compact form, finite-state aerodynamic models have been used for
aeroelastic and flight dynamic simulations and control design. The
basis for most of the developed finite-state aerodynamic models is
either Wagner’s and/or Theodorsen’s model for the unsteady lift.
Wagner [56] obtained the time-response of the lift on a flat plate
due to a step input (indicial response problem). Theodorsen [51]
obtained the frequency response of the lift; that is, lift response
due to a harmonically oscillating input, and applied it to the flut-
ter problem of fixed-wing aircraft. Garrick [23] showed that the
Wagner function, W (s), and the Theodorsen function, C(k), are re-
lated through the Fourier transform.

The principle underpinning this investigation is the Duhamel
superposition principle. Wagner [56] determined the circulatory
lift due to a step change in the wing motion. The unsteady lift
is then written in terms of the static lift as

�(s) = �s W (s) (1)

where the non-dimensional time s is defined as s = 2Ut
c for con-

stant free-stream velocity U and defined as

s = 2

c

t∫
0

U (τ )dτ (2)

for varying free-stream U (τ ) in this work. As for the dynamic
lift, knowing the indicial response for a linear dynamical system,
the response due to arbitrary excitation (input) can be written as
an integral (superposition) using the indicial response and time-
variation of the input variable. As such, the variation of the cir-
culatory lift due to an arbitrary change in the angle of attack is
expressed as

�(s) = πρU 2c

(
α(0)W (s) +

s∫
0

dα(σ )

dσ
W (s − σ)dσ

)
(3)

We note that W (s) can also be used as an indicial response to
aerodynamic inputs other than the angle of attack. Van der Wall
and Leishman [55] used it as an indicial response to the wing nor-
mal velocity, w = Uα, in the case of time-varying free stream. For
a relatively high angle of attack, the Duhamel superposition is per-
formed using a more exact normal velocity w = U sinα. Eq. (3) is
then re-written as

�(s) = πρU (s)c

(
U (0) sinα(0)W (s)

+
s∫

0

d(U (σ ) sinα(σ ))

dσ
W (s − σ)dσ

)
(4)

This equation is usually used in dynamic stall models where rel-
atively high α’s are encountered, e.g., the Beddoes–Leishman dy-
namic stall model developed in [7,28,30,29].

The main issue with the classical unsteady formulations dis-
cussed above is their inability to account for a non-conventional
lift curve (lift mechanism), such as the LEV contribution. To rem-
edy this, we note that the above discussion presumes linear de-
pendence of the lift on α, Uα, or U sinα. Within the framework
of potential flow, the lift is linearly dependent on the circula-
tion. This linear dependence presents the possibility of generalizing
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Fig. 2. Linear and nonlinear lift build up.

Eq. (4) for an arbitrary lift curve using the circulation as an aero-
dynamic forcing input in the Duhamel integral. As such, we write
the Duhamel’s integral as

�(s) = ρU (s)

(
ΓQS(0)W (s) +

s∫
0

dΓQS(σ )

dσ
W (s − σ)dσ

)
(5)

where ΓQS is the quasi-steady circulation. For a translating wing,
ΓQS(s) = 1

2 cU (s)CL(s), where the static lift curve is used to predict
CL(s); i.e., CL(s) ≡ CL,s(α(s)). Eq. (5) is the extension of the un-
steady aerodynamic modeling using Duhamel superposition to ar-
bitrary static CL –α curves, and arbitrary-varying free-stream U (s).
It should be noted that Eq. (5) reduces to all the previous forms of
Duhamel superposition for the particular cases of interest. More-
over, Eq. (5) allows us to account for the instantaneous rotational
effects (α̇-effects). This can be achieved by splitting the transla-
tional component from the rotational one and writing the total
circulation as the sum of the two terms, i.e., Γ = Γtrans + Γrot . As
for Γrot , one could use the potential flow result of a pitching airfoil,
see [22]

Γrot = πc2α̇

(
3

4
− x̂0

)
(6)

This splitting is justified as Eq. (6) matches well the experiments
of Dickinson et al. [15], Sane and Dickinson [43] and Andersen et
al. [2].

The main assumption here is that the lift response to an incre-
ment in circulation is independent of the aerodynamic state and
the Wagner function could be used to represent the indicial re-
sponse of the circulatory lift even for high values of α; that is,
Eq. (1) is still valid for high values of α. In other words, it is as-
sumed that the nonlinearity of the CL –α curve is accounted for in
the steady circulation term (input) and does not affect the tem-
poral build up of the circulatory lift, as illustrated in Fig. 2 for
a constant free stream. Fig. 2(a) shows static linear and nonlinear
lift curves, from which the CL values at a certain angle of attack, α,
are picked. Fig. 2(b) shows the corresponding lift build up to these
values. It is assumed that both the linear and nonlinear lift ex-
hibit the same temporal lift build up but to different values; ones
corresponding to the static lift curves.

To be more suitable for dynamic stability analysis and control
synthesis, Eq. (5) would be written in a state-space form. For con-
stant U , we could use a finite-state approximation for W (s), e.g.,
R.T. Jones [24] or W.P. Jones [27], which presents W (s) on the form

W (s) = 1 − A1e−b1s − A2e−b2s (7)

Then, we can use Laplace transform to get a transfer function and
consequently to obtain the corresponding state-space model. How-
ever, for a variable free-stream, the targeted state-space model is
expected to have time-varying coefficients, which eliminates the
ability to use the Laplace transform. Rewriting Eq. (5) in terms of
the dimensional time variables, t and τ , and integrating the second
term by parts, we obtain

�(t) = ρU (t)Γeff (t)

= ρU (t)

(
ΓQS(t)W (0) −

t∫
0

ΓQS(τ )
dW (t − τ )

dτ
dτ

)
(8)

where Γeff is the effective unsteady circulation. Using the two-state
approximation of the Wagner function as presented in Eq. (7) and
recalling the definition of the non-dimensional time from Eq. (2),
the term dW (t−τ )

dτ is written as

dW (t − τ )

dτ
= −Ai

2bi

c
U (τ )e

−2bi
c

∫ t
τ U (τ ) dτ , i = 1,2 (9)

where summation on the repeated indexes is used. Thus, Γeff is
given by

Γeff (t) = (1 − A1 − A2)ΓQS(t) + xi(t), i = 1,2 (10)

where xi is written as

xi(t) =
t∫

0

U (τ )Ai
2bi

c
U (τ )e

−2bi
c

∫ t
τ U (τ ) dτ dτ , i = 1,2 (11)

Eq. (11) represents solution to the linear differential equation

ẋi(t) = 2bi U (t)

c

(−xi(t) + AiΓQS(t)
)
, i = 1,2 (12)

with xi(0) = 0. In conclusion, the circulatory lift per unit span is
written as

�(t) = ρU (t)
[
(1 − A1 − A2)ΓQS(t) + x1(t) + x2(t)

]
(13)

where the state equations for x1 and x2 are given in Eq. (12) and
ΓQS(t) is given by

ΓQS(t) = 1

2
cU (t)CL,s

(
α(t)

) + πc2
(

3

4
− x̂0

)
α̇(t) (14)
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Any arbitrary wing motion (U (t),α(t)) along with any arbitrary
nonlinear CL,s–α curve can be plugged into Eq. (14) to obtain the
time variation of the quasi-steady circulation ΓQS(t). This term is,
in turn, considered as a forcing term in the state-space model,
Eq. (12). The circulatory lift per unit span, �, is then determined
from Eq. (13).

3. Application to hovering insects

Since the developed unsteady model requires a priori knowl-
edge of the static lift curve, the next subsection provides a gener-
alization for the empirical formulae to predict the static lift due to
a stabilized LEV accounting for the aspect ratio effects.

3.1. Static lift due to a stabilized LEV-effect of aspect ratio

Due to its compactness, the model of Dickinson et al. [15] has
been extensively used in dynamics and control of flapping MAVs,
e.g., [47,48,44,14,16,32]. It is a quasi-static expression; i.e., it gives
an algebraic expression for the lift and drag coefficients as func-
tions of the instantaneous angle of attack

CL = 0.225 + 1.58 sin(2.13α − 7.20)

C D = 1.92 − 1.55 cos(2.04α − 9.82) (15)

Wang et al. [58] fit their data with simpler forms; CL = A sin 2α,
C D = B − C cos 2α or C D = C D(0) cos2 α + C D( π

2 ) sin2 α, where the
coefficients A, B, C, C D(0), and C D( π

2 ) were determined experi-
mentally.

There are two fundamental shortcomings with the quasi-steady
models mentioned above. Firstly, they do not account for the un-
steady aspects associated with flapping flight. Secondly, the co-
efficients describing the aerodynamic terms in these models are
determined empirically and typically do not account for any varia-
tions in the wing shape. This latter concern can best be explained
by considering the work of Polhamus [40] who was the first to
model the LEV contribution on highly swept and delta wings by
a leading edge suction analogy. He identified two components for
the lift, namely the potential flow lift with zero leading edge suc-
tion, CLp = K p sinα cos2 α, and the vortex lift CLv = K v cosα sin2 α.
Both K p and K v are functions of the aspect ratio (AR). Particularly,
K p , which becomes the lift curve slope in the limit of small angles
of attack, is a strong function of the AR. Since Polhamus’ formula
models the same phenomenon (a stabilized LEV) as the previ-
ously mentioned quasi-steady models such as Dickinson’s model,
Eq. (15), the coefficients in these models would not be valid for
any arbitrary wing, as those coefficients could considerably change
with variations in the AR. In this section, we a general formula for
these coefficients in terms of the wing AR.

Wang et al. [58] showed that the static lift coefficient for
a translating wing, taking into account the LEV effect, could be
fit by CL = A sin 2α where A is a constant coefficient. Berman and
Wang [8] provided values for A for the hawk moth, bumblebee,
and fruit fly. However, there are no general formulas for this co-
efficient as a function of the wing geometry. In the limit to small
angles, the formula by Wang et al. reduces to CL = 2Aα; i.e., 2A
may be considered as the lift curve slope of the three-dimensional
wing CLα . Since flapping flight is associated with low aspect ratio
wings, one can use the Extended Lifting Line Theory (Schlichting and
Truckenbrodt [45]) to obtain the dependence of CLα on the wing
AR, which is given by

CLα = πAR

1 +
√

(πAR
a0

)2 + 1
(16)

Table 2
Morphological and aerodynamic parameters for the four insects studied.

Insect R (mm) S (mm2) Aspect ratio A

Drosophila virilis 3 2.97 3.10 –
Hawk moth 51.9 947.8 2.84 1.678
Bumble bee 13.2 54.9 3.17 1.341
Fruit fly 2.02 1.36 3.00 1.833

with the AR being based on one wing; i.e., AR = R2

S , and a0 is
the lift curve slope of the two-dimensional airfoil section, e.g. it
is equal to 2π for a flat plate or a very thin cambered shape. For
conventional airfoils, it could be determined from lift curves such
as the ones presented by Abbott and Doenhoff [1]. Using Eq. (16),
the static lift coefficient can be written as

CL = πAR

2(1 +
√

(πAR
a0

)2 + 1)
sin 2α (17)

A comparison is performed among the CL –α curve using Eq. (17),
Polhamus’ formula, the potential flow lift coefficient CL = CLα sinα,
and benchmark results for four insects: Drosophila virilis, Hawk
moth, Bumble bee, and Fruit fly. Eq. (16) was used to determine
CLα in Polhamus’ formula (K p ≡ CLα ) and the potential flow equa-
tion. As for the coefficient K v in Polhamus’ formula for the lift due
to LEV, the expression given in [40]

K v = (
K p − K 2

p Ki
) 1

cosΛ
(18)

is adopted, where Ki = ∂C D,induced

∂C2
L

, which can be taken as 1
πAR for

elliptic wings, and Λ is the sweep angle, which is assumed to be
zero. Dickinson’s empirical model, Eq. (15), was used to obtain the
benchmark CL in Fig. 3(a) for the Drosophila virilis wing which
was used as the basis for their empirical model in [15]. For the
other three insects, the formula of Wang et al. CL = A sin 2α was
used to obtain the benchmark CL , taking the values of A provided
by Berman and Wang [8] for those insects. Table 2 lists the mor-
phological parameters (R , S and AR) for the four insects, and the
aerodynamic parameter A for the three insects given in [8].

The divergence observed in Fig. 3 between the potential flow
lift and the benchmark results for all insects at relatively high val-
ues of α is expected. Although Polhamus [40] did not verify his
results for this wide range of α, his approach shows a good agree-
ment with the benchmark results. However, the proposed formula,
Eq. (17), is quite simpler and yields CL values that are closer to the
benchmark results than those of Polhamus for all insects.

The bumble bee case deserves a more thorough discussion.
We showed two benchmark results in Fig. 3(c), namely, those of
Berman and Wang [8] and Usherwood and Ellington [52]. Berman
and Wang obtained the coefficient A by fitting the data of Dud-
ley and Ellington [17], which were for steady forward flight not
hovering. That is, these data were for a completely fixed wing in
a wind tunnel, not a revolving wing like that of the experiments of
Dickinson et al. [15] or Usherwood and Ellington [52]. This may be
the reason for the relatively larger discrepancy between the esti-
mated CL by Berman, and Wang, and the one predicted by Eq. (17)
and that of Polhamus’ formula. It should be noted that Usherwood
and Ellington [52] provided two sets of CL -measurements. They
categorized them into early and steady measurements. The early
set represents measurements during the first half revolution of the
wing from the start time excluding transients. The steady set rep-
resents measurements from 180◦ to 450◦ (from half to one and
a half revolutions). Since a steady rotation (not back and forth flap-
ping) is considered in the experiment, the early measurements are
taken before the propeller wake and downwash are fully developed
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Fig. 3. Comparison between the proposed formula, Polhamus, potential flow, and benchmark results for CL due to a stabilized LEV.

and steady conditions are reached. Hence, Usherwood and Elling-
ton suggested the use of the early set for analysis of flapping flight.
The CL values predicted by Eq. (17) are in a better agreement with
the early results of Usherwood and Ellington than those of Berman
and Wang. On the contrary, the estimated CL by Berman and Wang
is closer to the steady results of Usherwood and Ellington. In con-
clusion, Eq. (17) has been shown to provide a surrogate model that
accounts for the AR effects on the lift due to a stabilized LEV.

3.2. Unsteady lift

In flapping-wing flight, the flapping kinematics with respect
to the body is usually described by the three Euler angles: the
back and forth flapping angle ϕ , the plunging angle ϑ , and the
pitching angle η. However, it can be assumed that most insects
hover in a horizontal stroke plane without an out-of-plane mo-
tion (ϑ = 0) as stated by Weis-Fogh [60] and Ellington [19]. Fig. 4
shows a schematic diagram for a flapping MAV whose wings sweep
a horizontal plane. The axis-system xb, yb , and zb is a body-fixed
frame and the system xw , yw , and zw is a wing-fixed frame. Two
rotations are considered, in this work, from the body-frame to the
wing-frame; that is ϕ and η. The flapping angle ϕ is the rotation
about the zb-axis and the pitching angle η is the rotation about
the yw -axis. As such, the total flapping velocity, seen by an air-

foil section that is a distance r from the wing root, is rϕ̇ with the
angle of attack given by

α(t) =
{

η, ϕ̇ > 0
π − η, ϕ̇ < 0

(19)

Hence, according to the unsteady finite-state model developed
above, the instantaneous lift per unit span on that airfoil section
is given by

�(r, t) = �NC(r, t) + ρr
∣∣ϕ̇(t)

∣∣
× [

(1 − A1 − A2)ΓQS(r, t) + x1(r, t) + x2(r, t)
]

(20)

where the non-circulatory lift component, �NC , is given by

�NC(r, t) = −mapp(r)ay(r, t) cosη(t) (21)

where mapp(r) = π
4 ρc2(r) is the apparent mass of the two-

dimensional strip, ay(r, t) and ΓQS(r, t) are the airfoil upward
normal acceleration and the quasi-steady circulation, respectively,
and are given by

ay(r, t) = r
(−ϕ̈(t) sinη(t) − ϕ̇(t)η̇(t) cosη(t)

)
ΓQS(r, t) = 1

2
c(r)rϕ̇(t)CL,s

(
η(t)

) + πc2(r)

(
3

4
− x̂0

)
η̇(t) (22)
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Fig. 4. Schematic diagram for a flapping-wing MAV whose wings sweep a horizontal plane.

Fig. 5. The hovering idealized kinematics used by Sun and Du [49] for the fruit fly case.

where, for hovering MAVs having LEV shed, it has been shown in
the previous subsection that Eq. (17) is sufficient to predict the
static lift coefficient CL,s of the three-dimensional wing. Finally,
the dynamics of the internal flow-states x1 and x2 are governed by

ẋi(r, t) = 2bir|ϕ̇(t)|
c(r)

[−xi(r, t) + AiΓQS(r, t)
]
, j = i = 1,2 (23)

The three-dimensionality is accounted for by using strip theory
and CL,s of the three-dimensional wing. If dynamic twist is al-
lowed, however, CL,s will have to be of the two-dimensional strip
and a three-dimensional correction for the lift curve slope may be
used instead.

4. Validation and comparison with previous models

Validation of the aerodynamic loads as predicted by the pro-
posed model is performed by comparing its results to those ob-
tained by Sun and Du [49]. They performed direct numerical sim-
ulation (DNS) for Navier–Stokes equations on the wings of different
insects that cover a wide range of operating conditions and mor-
phological parameters. According to the above model, the lift force
is driven by the wing kinematic functions, ϕ and η. Sun and Du
considered idealized kinematics without an out-of-plane motion
(ϑ = 0) that closely match the observed kinematics in nature, as

described by Dickinson et al. [15]. Their kinematics prescribe the
flapping angle to be a simple harmonic: ϕ(t) = −Φ

2 cos(ωt), where
Φ
2 is the flapping amplitude. As for the pitching angle, η, it takes

a constant value, referred to as αm , except at the beginning and
near the end of each half stroke. During the rotation phase, the η
variation is described by

η(t) = �α

�tr

[
(t − tr) − �tr

2π
sin

(
2π(t − tr)

�tr

)]
(24)

where �tr is the duration of each rotational phase, and tr is the
time at which this phase starts. Knowing αm is enough to deter-
mine �α, since the wing rotates from αm to π −αm or vice versa.
Setting �tr equal to 0.25T , and considering symmetric rotation, tr
can be determined. Fig. 5 shows the variation of the kinematic an-
gles ϕ and η throughout the flapping cycle for the fruit fly case.
As for the wing planform, one just needs the chord distribution, or
more specifically the weighted moments of the wing area. The val-
ues of these moments can be found in [21] for the fruit fly and in
[18] for all other insects. Sun and Du listed all the required mor-
phological parameters, f ,Φ,αm, S, R , and the total mass for all the
insects under study.

To further emphasize the physical aspects captured by the de-
veloped model, we compare its results to the most recent quasi-
steady model of Berman and Wang [8] which is based on Andersen
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Fig. 6. Comparison of the CL over one flapping cycle using the current state-space model, the DNS results of Sun and Du [49], the quasi-steady model of Berman and Wang
[8], and the classical unsteady approach for four insects.

et al. [2,3] and Pesavento and Wang [33]. This comparison is ex-
pected to show the effects of unsteadiness on the aerodynamics of
flapping flight. Moreover, we present a comparison with the clas-
sical unsteady approach; i.e., the state-space formulation of Eq. (4)
along with the added mass contribution. This model is described
in details in [30,29]. This comparison is expected to assess the ef-
fects of the LEV on the aerodynamics of flapping flight. It should be
noted that, because of the low aspect ratio of insect wings, keep-
ing the lift curve slope at 2π like the classical unsteady approach
shown in Eq. (4), leads to highly erroneous results (almost doubles
the aerodynamic loads). So, we opted to use the three-dimensional
lift curve slope as presented in Eq. (16) in the classical unsteady
formulation as well to make the comparison more meaningful.

Fig. 6 shows a comparison of the steady-state periodic vari-
ation of the lift coefficient over one cycle for the four insects
studied by Sun and Du. The lift coefficient is based on the ref-
erence speed adopted by Sun and Du, Uref = 2 f Φr2, where r2/R
is the non-dimensional second moment of wing area. As such, the
lift coefficient is defined as CL = L

ρU 2
ref S

. It should be emphasized

that despite the complexity of the flow field and the simplicity and
compactness of the proposed model, it is able to capture the LEV
contribution in an unsteady fashion as the lift variation throughout
the cycle matches well the benchmark results for all the insects.

It is very well known that quasi-steady models predict higher
loads than their unsteady counterparts, see [11] for example. This
illustrates the reason behind the higher CL -values predicted by the
model of Berman and Wang. Its unsteady counterpart (the present
model) is closer to the DNS results of Sun and Du. The largest
deviation amongst the four insects of the quasi-steady model of
Berman and Wang from the present and the DNS results takes
place in the case of fruit fly ( f = 254 Hz). This is consistent with
the fact that the deviation of quasi-steady models from their un-
steady counterparts is more pronounced at higher frequencies. On
the other hand, the steady values for CL due to a stabilized LEV
are less than those predicted by the classical potential flow for-
mula CL = CLα sinα, as shown in Fig. 3, particularly for angles
of attack higher than 25◦ . This illustrates the reason behind the
higher CL -values predicted by the classical unsteady approach in
the middle of half strokes where the LEV contribution is domi-
nant. Deviations of the classical unsteady results from the present
and the DNS ones are larger in the cases of αm = 46◦ and 43 (fruit
fly and ladybird) in comparison to the cases of αm = 29◦ and 30
(hover fly and crane fly). This is consistent with the fact that the
deviation of the classical potential flow theory from the true LEV
steady CL –α curve becomes larger as the angle of attack is in-
creased, see Fig. 3. It should be noted that, however, near stroke
reversals where the effect of wing rotation becomes dominant, the
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Table 3
The operating conditions for the four insects under study along with the two comparison metrics �CL and �CLrms between each of the three studied models and the DNS
results. The numbers given between parenthesis are for �CLrms .

Insect Φ◦ α◦
m f (Hz) Present model Classical unsteady Berman and Wang

Crane fly 123 30 45.5 7.3 (7.9) 26.9 (15.5) 13.12 (14.6)

Lady bird 177 43 54 1.8 (5.8) 43.1 (22.0) 7.0 (12.7)

Hover fly 90 29 160 3.4 (10.4) 14.0 (13.6) 8.6 (25.2)

Fruit fly 150 46 254 0.3 (12.8) 49.2 (36.2) 16.9 (31.6)

classical unsteady approach predicts CL -values that are very close
to the present results and the DNS results. Note that they have the
same models for rotational contributions.

It is noted from Fig. 6 that the quasi-steady model of Berman
and Wang is closer to the present results and the DNS results
than the classical unsteady approach in the middle of half strokes
where the LEV contribution is dominant. However, its performance
is poorer near stroke reversals where the rotational contribution
is dominant. Thus, for symmetric flapping (identical downstroke
and upstroke) where the net rotational contribution to the cycle-
average lift is zero, the quasi-steady models of Berman and Wang
or Dickinson et al. [15] might result in good estimates for the
cycle-average lift coefficients. This notion along with their com-
pactness make them suitable for performing preliminary designs of
flapping-wing MAVs. However, because they perform poorly near
stroke reversals, these models are not satisfactory when used to
perform aerodynamic optimization that may depend on rotational
contributions or to analyze asymmetric flapping cycles necessary
for control purposes. It is noteworthy to mention that because the
present model is intended to be a blend of the quasi-steady models
(capturing the LEV contribution) and the classical unsteady rep-
resentations, its results are always closer to the better model in
its region of applicability; i.e., closer to the quasi-steady model in
the middle of half strokes and closer to the unsteady model near
stroke reversals.

Table 3 presents the operating conditions for the four insects
under study along with two comparison metrics between each
of the three studied models and the DNS results. These metrics
are the percentage deviation in cycle average lift coefficient from

the DNS value �CL% = |CL model
−CL DNS |

CL DNS
× 100 and the root-mean-

squared difference of the lift coefficient in percent of maximum lift

coefficient �CLrms % =
√

1
T

∫ T
0 (CLmodel

(t)−CLDNS (t))2 dt

max(CLDNS )
× 100. Both met-

rics show that the performance of the present model is better
than the other two models. It should be also emphasized that
the computational cost of the three models under study are al-
most the same. Therefore, using the present model allows cap-
turing non-conventional lift curves/mechanisms (LEV) in an un-
steady fashion without an extra computational burden. Finally, it
is noteworthy to mention that using the two-dimensional lift-
curve slope 2π as in Eq. (4) leads to very large deviations of
the classical unsteady approach. In terms of the stated comparison
metrics, it leads to �CL% = 85.5,150.9,86.0,183.6 and �CLrms % =
43.4,75.9,46.6,111.0 for the four insects, respectively.

Finally, it should be noted that the developed model will not
be applicable in the cases where unstable leading edge vortices are
encountered. This may happen at relatively high Reynolds numbers
and/or in cases of wings with thick, rounded leading edges. Not-
ing that the flapping wings are naturally very thin having sharp
leading edges, we also point to the fact that the largest Reynolds
number of flying insects of interest (Hawk moth) is 3852 for which
the LEV is still of a stable nature. In addition, in contrast to fixed
wings, the spanwise flow on flapping wings induces a stabilizing
action to the formed LEV. Thus, the flapping flight will mostly be
associated with a stabilized LEV.

5. Reduced-order modeling

The above calculations were performed using 50 spanwise sta-
tions, which required a total of 100 aerodynamic states. However,
flight dynamicists may wish to have a more reduced-order model
in terms of the internal aerodynamic states that is more suitable
for flight dynamics and control analyses without loss of the physics
being captured.

Motivated by such a goal, we propose a fourth order model that
still captures the same physical aspects (LEV, unsteadiness, and
rotational contributions). This is achieved by exploiting the knowl-
edge of the spanwise distributions of all the lift contributors in the
integration of Eq. (20) over the wing. This dictates the separation
of the translational term from the rotational one because the two
terms have different spanwise distributions: r2c(r) for the transla-
tional term versus rc2(r) for the rotational term. As such, the total
lift on the wing is written as L = LNC + Ltrans + Lrot where

LNC(t) = π

4
ρ I12

[
ϕ̈(t) sinη(t) + ϕ̇(t)η̇(t) cosη(t)

]
cosη(t)

Ltrans(t) = 1

2
ρ I21

∣∣ϕ̇(t)
∣∣

× [
(1 − A1 − A2)ϕ̇(t)CL,s

(
η(t)

) + x1(t) + x2(t)
]

and

Lrot(t) = ρ I12

(
3

4
− x̂0

)
ϕ̇(t)

[
(1 − A1 − A2)η̇(t) + x3(t) + x4(t)

]
(25)

where I21 = 2
∫ R

0 r2c(r)dr , and I12 = 2
∫ R

0 rc2(r)dr are the weighted
moments of area for the two wing halves. The state equations for
the four state variables are then given by

ẋi(t) = 2b jr|ϕ̇(t)|
c

[−xi(t) + A jϕ̇(t)CL,s
(
η(t)

)]
, j = i = 1,2

ẋi(t) = 2b jr|ϕ̇(t)|
c

[−xi(t) + A jη̇(t)
]
, j = i − 2 = 1,2 (26)

where r and c are taken at a certain reference section. For the plots
shown below, we use the section at r = r2 = I21

2S R as a reference
section.

Fig. 7 shows a comparison between the lift coefficient obtained
by using the reduced-order model (four states) and that using the
full model (100 states). The plots show a very good agreement.
Additionally, in terms of the comparison metrics, the following
deviations for the reduce-order model from the DNS results are
found 12.0 (6.3), 2.0 (5.6), 10.3 (10.6), and 4.3 (12.3). Hence, the
reduced-order model could capture the dominant contributions of
the aerodynamic loads with a quite feasible computational burden.
Moreover, it is represented in a compact form that is very well
suited for flight dynamic stability and control analyses of flapping-
wing MAVs. Finally, we should note that a similar agreement is
obtained when using the section having the mean chord length as
a reference section.
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Fig. 7. Results for the CL build up throughout the cycle using the reduced-order model versus the full model.

6. Conclusion

This work provides a state-space model for the unsteady lift
due to flapping flight. The model is based on an extension to
Duhamel’s principle to non-conventional lift curves with the spe-
cific objective of capturing the contribution of the Leading Edge
Vortex (LEV). The unsteady lift due to arbitrary wing motion is
generated using the static lift curve. The effects of the aspect ra-
tio on the empirical formulae used to predict the static lift due to
a stabilized LEV were also accounted for.

The derived model is validated through a comparison with di-
rect numerical simulations of Navier–Stokes on hovering insects.
The results show that the lift variation throughout the flapping
cycle matches well those of the benchmark results for all in-
sects. A comparison with quasi-steady models that capture the
LEV contribution is performed to assess the role of unsteadiness.
The results show that quasi-steady models, which capture the LEV
contribution, result in higher aerodynamic loads. Deviations up to
16.9% in cycle-average lift coefficients and 31.6% in root-mean-
squared errors of the lift coefficient were found using those quasi-
steady models. On the other hand, a comparison with classical un-
steady approaches is also presented to assess the LEV dominance.
We found that the classical unsteady approaches overestimate the
aerodynamic loads, particularly at high angles of attack. They per-
form well near stroke reversals where the rotational contribution

is dominant. Deviations of the classical unsteady approach from
the direct numerical simulations were up to 49.2% in cycle-average
lift coefficients and 36.2% in root-mean-squared errors of the lift
coefficient.

The derived model can be considered as a blend of the classical
unsteady aerodynamic models and the quasi-steady models that
capture the LEV contribution. Therefore, it performs better than the
two and requires almost the same computational cost. In terms of
the comparison metrics, the deviation of the derived model from
the DNS results ranges between 0.3%–7.3% in the cycle-average lift
coefficients and between 5.8%–12.8% in root-mean-squared errors
of the lift coefficient. Finally, a reduced-order model consisting of
four internal aerodynamic states is derived from the full model
(100 states) for flight dynamics and control analyses. The resulted
lift coefficient using the reduced-order model is in a very good
agreement with that of the full model.
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