122 research outputs found

    The Discreteness-driven Relaxation of Collisionless Gravitating Systems: Entropy Evolution in External Potentials, N-dependence, and the Role of Chaos

    Get PDF
    We investigate the old problem of the fast relaxation of collisionless N-body systems that are collapsing or perturbed, emphasizing the importance of (noncollisional) discreteness effects. We integrate orbit ensembles in fixed potentials, estimating the entropy to analyze the time evolution of the distribution function. These estimates capture the correct physical behavior expected from the second law of thermodynamics, without any spurious entropy production. For self-consistent (i.e., stationary) samples, the entropy is conserved, while for non-self-consistent samples, it increases within a few dynamical times, stabilizing at a maximum (even in integrable potentials). Our results make transparent that the main ingredient for this fast collisionless relaxation is the discreteness (finite N) of gravitational systems in any potential. Additionally, in nonintegrable potentials, the presence of chaotic orbits accelerates the entropy production. Contrary to the traditional violent relaxation scenario, our results indicate that a time-dependent potential is not necessary for this relaxation. For the first time, in connection with the Nyquist–Shannon theorem, we derive the typical timescale T tcr » 0.1N 1 6 for this discreteness-driven relaxation, with slightly weaker N-dependencies for nonintegrable potentials with substantial fractions of chaotic orbits. This timescale is much smaller than the collisional relaxation time even for small-N systems such as open clusters and represents an upper limit for the relaxation time of real N-body collisionless systems. Additionally, our results reinforce the conclusion of Beraldo e Silva et al. that the Vlasov equation does not provide an adequate kinetic description of the fast relaxation of collapsing collisionless N-body systems.MTM2017-82160-C2-2-P. FAPESP (2009/54006-4) and the INCT-A. FAPESP (2014/23751-4 and 2017-01421-0). W.dS.P. is CNPq (308337/2017-4). HST-AR-13890.001, NSF award AST-1515001, NASA-ATP award NNX15AK79G. FAPESP (2017/25620-2) FAPESP (2017/22340-9), by the Basque Government (IT641-13)

    Tracing Birth Properties of Stars with Abundance Clustering

    Get PDF
    To understand the formation and evolution of the Milky Way disk, we must connect its current properties to its past. We explore hydrodynamical cosmological simulations to investigate how the chemical abundances of stars might be linked to their origins. Using hierarchical clustering of abundance measurements in two Milky Way-like simulations with distributed and steady star formation histories, we find that groups of chemically similar stars comprise different groups in birth place (R birth) and time (age). Simulating observational abundance errors (0.05 dex), we find that to trace distinct groups of (R birth, age) requires a large vector of abundances. Using 15 element abundances (Fe, O, Mg, S, Si, C, P, Mn, Ne, Al, N, V, Ba, Cr, Co), up to ≈10 groups can be defined with ≈25% overlap in (R birth, age). We build a simple model to show that in the context of these simulations, it is possible to infer a star's age and R birth from abundances with precisions of ±0.06 Gyr and ±1.17 kpc, respectively. We find that abundance clustering is ineffective for a third simulation, where low-α stars form distributed in the disk and early high-α stars form more rapidly in clumps that sink toward the Galactic center as their constituent stars evolve to enrich the interstellar medium. However, this formation path leads to large age dispersions across the [α/Fe]-[Fe/H] plane, which is inconsistent with the Milky Way's observed properties. We conclude that abundance clustering is a promising approach toward charting the history of our Galaxy

    Characterisation of high velocity stars in the S-PLUS internal fourth data release

    Full text link
    In general, the atypical high velocity of some stars in the Galaxy can only be explained by invoking acceleration mechanisms related to extreme astrophysical events in the Milky Way. Using astrometric data from Gaia and the photometric information in 12 filters of the S-PLUS, we performed a kinematic, dynamical, and chemical analysis of 64 stars with galactocentric velocities higher than 400 km s−1\mathrm{km\,s}^{-1}. All the stars are gravitationally bound to the Galaxy and exhibit halo kinematics. Some of the stars could be remnants of structures such as the Sequoia and the Gaia-Sausage/Enceladus. Supported by orbital and chemical analysis, we identified Gaia DR3 5401875170994688896 as a star likely to be originated at the centre of the Galaxy. Application of a machine learning technique to the S-PLUS photometric data allows us to obtain very good estimates of magnesium abundances for this sample of high velocity stars

    DESI Observations of the Andromeda Galaxy: Revealing the Immigration History of our Nearest Neighbor

    Full text link
    We present DESI observations of the inner halo of M31, which reveal the kinematics of a recent merger - a galactic immigration event - in exquisite detail. Of the 11,416 sources studied in 3.75 hour of on-sky exposure time, 7,438 are M31 sources with well measured radial velocities. The observations reveal intricate coherent kinematic structure in the positions and velocities of individual stars: streams, wedges, and chevrons. While hints of coherent structures have been previously detected in M31, this is the first time they have been seen with such detail and clarity in a galaxy beyond the Milky Way. We find clear kinematic evidence for shell structures in the Giant Stellar Stream, the Northeast Shelf and Western Shelf regions. The kinematics are remarkably similar to the predictions of dynamical models constructed to explain the spatial morphology of the inner halo. The results are consistent with the interpretation that much of the substructure in the inner halo of M31 is produced by a single galactic immigration event 1 - 2 Gyr ago. Significant numbers of metal-rich stars ([Fe/H]>−0.5>-0.5) are present in all of the detected substructures, suggesting that the immigrating galaxy had an extended star formation history. We also investigate the ability of the shells and Giant Stellar Stream to constrain the gravitational potential of M31, and estimate the mass within a projected radius of 125 kpc to be log10 MNFW(<125 kpc)/M⊙=11.80−0.10+0.12{\rm log_{10}}\, M_{\rm NFW}(<125\,{\rm kpc})/M_\odot = 11.80_{-0.10}^{+0.12}. The results herald a new era in our ability to study stars on a galactic scale and the immigration histories of galaxies.Comment: 45 pages, 22 figures, 8 tables; Astrophysical Journal in press; Data at https://zenodo.org/record/697749

    Overview of the DESI Milky Way Survey

    Get PDF
    We describe the Milky Way Survey (MWS) that will be undertaken with the Dark Energy Spectroscopic Instrument (DESI) on the Mayall 4 m telescope at the Kitt Peak National Observatory. Over the next 5 yr DESI MWS will observe approximately seven million stars at Galactic latitudes ∣b∣ > 20°, with an inclusive target selection scheme focused on the thick disk and stellar halo. MWS will also include several high-completeness samples of rare stellar types, including white dwarfs, low-mass stars within 100 pc of the Sun, and horizontal branch stars. We summarize the potential of DESI to advance understanding of the Galactic structure and stellar evolution. We introduce the final definitions of the main MWS target classes and estimate the number of stars in each class that will be observed. We describe our pipelines for deriving radial velocities, atmospheric parameters, and chemical abundances. We use ≃500,000 spectra of unique stellar targets from the DESI Survey Validation program (SV) to demonstrate that our pipelines can measure radial velocities to ≃1 km s−1 and [Fe/H] accurate to ≃0.2 dex for typical stars in our main sample. We find the stellar parameter distributions from ≈100 deg2 of SV observations with ≳90% completeness on our main sample are in good agreement with expectations from mock catalogs and previous surveys

    DESI Early Data Release Milky Way Survey value-added catalogue

    Get PDF
    International audienceWe present the stellar value-added catalogue based on the Dark Energy Spectroscopic Instrument (DESI) Early Data Release. The catalogue contains radial velocity and stellar parameter measurements for |≃\simeq| 400 000 unique stars observed during commissioning and survey validation by DESI. These observations were made under conditions similar to the Milky Way Survey (MWS) currently carried out by DESI but also include multiple specially targeted fields, such as those containing well-studied dwarf galaxies and stellar streams. The majority of observed stars have |16<r<2016\lt r\lt 20| with a median signal-to-noise ratio in the spectra of |∌\sim| 20. In the paper, we describe the structure of the catalogue, give an overview of different target classes observed, as well as provide recipes for selecting clean stellar samples. We validate the catalogue using external high-resolution measurements and show that radial velocities, surface gravities, and iron abundances determined by DESI are accurate to 1 km s^−1, 0.3 dex, and |∌\sim| 0.15 dex respectively. We also demonstrate possible uses of the catalogue for chemo-dynamical studies of the Milky Way stellar halo and Draco dwarf spheroidal. The value-added catalogue described in this paper is the very first DESI MWS catalogue. The next DESI data release, expected in less than a year, will add the data from the first year of DESI survey operations and will contain approximately 4 million stars, along with significant processing improvements

    Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a survey covering 14,000 deg2^2 over five years to constrain the cosmic expansion history through precise measurements of Baryon Acoustic Oscillations (BAO). The scientific program for DESI was evaluated during a five month Survey Validation (SV) campaign before beginning full operations. This program produced deep spectra of tens of thousands of objects from each of the stellar (MWS), bright galaxy (BGS), luminous red galaxy (LRG), emission line galaxy (ELG), and quasar target classes. These SV spectra were used to optimize redshift distributions, characterize exposure times, determine calibration procedures, and assess observational overheads for the five-year program. In this paper, we present the final target selection algorithms, redshift distributions, and projected cosmology constraints resulting from those studies. We also present a `One-Percent survey' conducted at the conclusion of Survey Validation covering 140 deg2^2 using the final target selection algorithms with exposures of a depth typical of the main survey. The Survey Validation indicates that DESI will be able to complete the full 14,000 deg2^2 program with spectroscopically-confirmed targets from the MWS, BGS, LRG, ELG, and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87 million, respectively. These samples will allow exploration of the Milky Way halo, clustering on all scales, and BAO measurements with a statistical precision of 0.28% over the redshift interval z<1.1z<1.1, 0.39% over the redshift interval 1.1<z<1.91.1<z<1.9, and 0.46% over the redshift interval 1.9<z<3.51.9<z<3.5.Comment: 42 pages, 18 figures, accepted by A

    Impactos dos subsĂ­dios agrĂ­colas dos Estados Unidos na expansĂŁo do agronegĂłcio brasileiro

    Get PDF
    Nos fĂłruns de negociaçÔes multilaterais da Organização Mundial de ComĂ©rcio subsiste veemente debate com intuito de eliminar as subvençÔes agrĂ­colas nos paĂ­ses desenvolvidos. Contudo, os Estados Unidos tĂȘm aumentado o volume desses subsĂ­dios, causando distorçÔes no comĂ©rcio agrĂ­cola mundial. Assim, o objetivo desta pesquisa foi avaliar os impactos desses subsĂ­dios norte-americanos (Loan Deficiency Payments), concedidos no perĂ­odo de 2002 a 2007, sobre o crescimento do agronegĂłcio brasileiro. Os resultados permitem inferir que a redução dos subsĂ­dios nos EUA propiciaria o crescimento da produção agroindustrial brasileira e ampliaria o superĂĄvit na balança comercial desse setor, com crescimento conjunto das exportaçÔes e importaçÔes. Portanto, cortes nesses subsĂ­dios contribuiriam para maior competitividade das exportaçÔes brasileiras e gerariam oportunidades para o crescimento do agronegĂłcio.In the forums of multilateral negotiations of the World Trade Organization (WTO) there has been a strong debate which tries to eliminate the agricultural subventions in the developed countries. However, the United States has increased the amount of these subsidies causing distortions in the world agricultural trade. Therefore, the purpose of this research has been to evaluate these American subsidies impacts (Loan Deficiency Payments) given between 2002 and 2007 upon the Brazilian agribusiness growth. The findings allow to deduce that the reduction of the subsidies in the United States might promote the growth of the Brazilian agribusiness production and might produce trade surplus in the trade balance in this sector as well as the growth of both exports and imports. Hence the cuts in these subsidies would contribute to a bigger competitiveness of the Brazilian exports and would generate opportunities to the agribusiness growth
    • 

    corecore