
Tracing Birth Properties of Stars with Abundance Clustering

Bridget L. Ratcliffe1 , Melissa K. Ness2,3 , Tobias Buck4 , Kathryn V. Johnston2,3 , Bodhisattva Sen1 ,
Leandro Beraldo e Silva5 , and Victor P. Debattista5,6

1 Department of Statistics, Columbia University, 1255 Amsterdam Avenue, New York, NY 10027, USA; blr2147@columbia.edu
2 Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA

3 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
4 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

5 Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE, UK
6 Institute of Space Sciences & Astronomy, University of Malta, Msida, MSD 2080, Malta

Received 2021 July 5; revised 2021 October 7; accepted 2021 October 27; published 2022 January 12

Abstract

To understand the formation and evolution of the Milky Way disk, we must connect its current properties to its
past. We explore hydrodynamical cosmological simulations to investigate how the chemical abundances of stars
might be linked to their origins. Using hierarchical clustering of abundance measurements in two Milky Way–like
simulations with distributed and steady star formation histories, we find that groups of chemically similar stars
comprise different groups in birth place (Rbirth) and time (age). Simulating observational abundance errors (0.05
dex), we find that to trace distinct groups of (Rbirth, age) requires a large vector of abundances. Using 15 element
abundances (Fe, O, Mg, S, Si, C, P, Mn, Ne, Al, N, V, Ba, Cr, Co), up to ≈10 groups can be defined with ≈25%
overlap in (Rbirth, age). We build a simple model to show that in the context of these simulations, it is possible to
infer a star’s age and Rbirth from abundances with precisions of ±0.06 Gyr and ±1.17 kpc, respectively. We find
that abundance clustering is ineffective for a third simulation, where low-α stars form distributed in the disk and
early high-α stars form more rapidly in clumps that sink toward the Galactic center as their constituent stars evolve
to enrich the interstellar medium. However, this formation path leads to large age dispersions across the [α/Fe]–
[Fe/H] plane, which is inconsistent with the Milky Way’s observed properties. We conclude that abundance
clustering is a promising approach toward charting the history of our Galaxy.

Unified Astronomy Thesaurus concepts: Stellar populations (1622); Clustering (1908); Stellar abundances (1577);
Astrostatistics techniques (1886); Chemical abundances (224); Milky Way Galaxy (1054); Hydrodynamical
simulations (767)

1. Introduction

With large spectroscopic surveys, we have access to precise
individual chemical element abundance measurements for
105–106 stars. The GALactic Archaeology with HERMES
survey (GALAH; Buder et al. 2018) provides stellar parameters
and up to 23 abundances for 342,682 stars, and the Gaia–
European Southern Observatory (ESO) survey (Gilmore et al.
2012) measures detailed abundances for 12 elements in about
10,000 field stars. Another example of the current depth of
observational data is the 16th data release of the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) survey,
which contains information for 437,485 unique stars and more
than 20 abundances (Ahumada et al. 2020; Jönsson et al. 2020).

For the Milky Way, we can use large spectroscopic surveys to
catalog an ensemble of measurements. These include precise
stellar metallicities and abundances ([Fe/H], [X/Fe]) and
imprecise ages, as well as current-day positions and orbital
parameters. These numbers can be used to work toward the
reconstruction of the initial state of the Milky Way. While the
chemical abundances of stars are birth properties, stars move and
their orbits evolve over time (e.g., Sellwood & Binney 2002;
Roškar et al. 2008; Schönrich & Binney 2009a; Minchev &
Famaey 2010; Hayden et al. 2018) and their dynamical

properties change (e.g., Roškar et al. 2012). Chemical tagging
utilizes the unchanging chemical abundances to identify star
formation groups (Freeman & Bland-Hawthorn 2002). This is in
theory possible as birth clusters up to 105 Me are anticipated to
be chemically homogeneous (Bland-Hawthorn et al. 2010).
Chemical tagging has great promise (e.g., Hogg et al. 2016;
Martell et al. 2016); however, it has been shown to be difficult
due to the need for extremely large sample sizes (Ting et al.
2015) and high-precision data (Lindegren & Feltzing 2013).
In paper I of this series (Ratcliffe et al. 2020), we examined

the distribution of clusters defined in a 19-dimensional
chemical abundance space for 27,000 red clump APOGEE Data
Release 14 (DR14) stars in the Milky Way’s disk (Bovy et al.
2014). Using a nonparametric agglomerative hierarchical
clustering method, we determined that the groups defined in
abundance space are spatially separated as a function of age.
Yet, to reconstruct the disk in the past, we need to know

where the stars were born, which we cannot measure directly
from data. Recently, we have gained access to some of the
largest and highest-resolution samples of zoom-in Milky Way–
like simulations, e.g., NIHAO-UHD (Buck et al. 2020),
AURGIA (Grand et al. 2017), and Feedback In Realistic
Environments-2 (FIRE-2; Garrison-Kimmel et al. 2018). We
also now have access to more abundance information in
simulations, with g8.26e11 from the Numerical Investigation of
a Hundred Astronomical Objects (NIHAO)-UHD suite provid-
ing information for 15 abundances and Ananke from Sanderson
et al. (2020) having information for 11 abundances. Thus, now
in simulations we have access to the full set of properties to
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trace the formation and evolution of disks (e.g., [Fe/H], [X/Fe],
age, and their origin as indicated by their birth radii within the
Galactic disk, Rbirth). This enables us to use simulations to
investigate and understand the dependencies and relationships
between these properties in disk galaxies, under particular initial
conditions and evolutionary events.

Some recent work has examined Rbirth in simulations in an
attempt to better understand the Milky Way’s formation (e.g.,
Loebman et al. 2011; Minchev et al. 2012a, 2012b). With the
use of a series of high-resolution smooth-particle hydrody-
namics simulations of isolated galaxy formations, Roškar et al.
(2008) showed that radial migration is possible on short
timescales. In agreement with Grand et al. (2016), Bird et al.
(2021) argued for inside-out and upside-down formation, in
addition to showing a correlation between Rbirth and birth
kinematics. Johnson et al. (2021) find that in their hybrid
hydrodynamical simulation there is a relationship between age,
abundances, and Rbirth in the solar neighborhood (consistent
with the expectations of earlier works: Matteucci & Fran-
cois 1989; Friedli et al. 1994; Schönrich & Binney 2009b;
Minchev et al. 2018; Hemler et al. 2021), and that the low-α
sequence represents a superposition of populations achieved by
radial migration rather than an evolutionary sequence (see also
Buck 2020).

In this paper, we use simulations to explore the physical
meaning of groups of stars defined only in ([Fe/H], [X/Fe])
space in the observational data. We do not wish to trace back
individual birth groups such as done in chemical tagging
proposed by Freeman & Bland-Hawthorn (2002), but rather
focus on the general birth properties of chemically similar stars
in n abundance dimensions. That is, to test if abundance
clustering allows the extraction of information about stellar
birth properties. The questions we wish to answer are (i) do
abundances link to birth associations, and if so does it rely on
star formation processes; (ii) how does the presence of
observational errors and sample size effect results; (iii) are
results dependent on the clustering methods used; and (iv) is
there a relationship between stellar birth properties and their
abundances? Milky Way analog simulations are a good tool to
investigate the questions we pose and qualitatively represent
the formation processes of our Galaxy. Both observations and
hydrodynamical simulations of Milky Way analogues show
that from about z= 1, stellar disks form inside-out, with
ongoing enrichment and star formation across the disk until late
times (e.g., Chiappini et al. 1997; Muñoz-Mateos et al. 2007;
Roškar et al. 2008; Bovy et al. 2012; Stinson et al. 2013;
Minchev et al. 2015; Sanderson et al. 2020) (see Haywood
et al. 2013, for argument against inside-out formation).

The numerical relationship between Rbirth, abundances, and
age in the Milky Way has been investigated before. Minchev
et al. (2018) proposed a largely model-independent method to
infer stellar birth radii for observational data by using age and
[Fe/H] to project stars to their birth radius, along gradients of
age–[Fe/H] . Further, Frankel et al. (2018) constructed a full
physical model of the age–metallicity distribution given stellar
radii, and inverted this relation to find birth radii for the low-α
sequence of APOGEE data. Ness et al. (2019) also suggest that
[Fe/H], age, and high- or low-α sequence membership is all
that is needed to infer a star’s Rbirth. Using abundances, age,
and the metallicity profile of the interstellar medium at the time
of the star’s formation, Feltzing et al. (2020) tested the effects
of radial migration on red giant branch stars by quantifying the

fraction of stars that have been subject to blurring and
churning. While it is possible to infer Rbirth given some
modeling assumptions, one can never directly measure the birth
radius of an individual star in the Milky Way. Using
simulations, we can study the link between chemical composi-
tion at birth ([Fe/H], [X/Fe]), birth time (tbirth, or age) and
birth location (Rbirth).
This paper is organized as follows. In Section 2 we discuss

the two simulations upon which this paper focuses. Clustering
methods used in this work are described in Section 3. Section 4
explores how chemically similar stars separate into distinct
groups in the age–Rbirth plane, which means they occupy
different spaces in birth time and place. Section 5 explores how
these results change under sampling and observational errors.
Our last results section, Section 6, quantifies the relationship
between ([Fe/H], [X/Fe]) and age, and ([Fe/H], [X/Fe], age)
and Rbirth using simple second-order polynomial regressions.
Finally, Sections 7 and 8 present the discussion and
conclusions of this analysis.

2. Simulations

In this paper, we focus on two simulations, one with only
two chemical abundances available (g7.55e11, referred to as
Chem2d) and another with 15 chemical abundances (g8.26e11,
referred to as Chem15d). We include both the high- and low-
dimensional simulations to investigate how stellar birth
information is able to be captured in a few versus large vector
of abundances.
The Chem2d and Chem15d simulations are taken from the

NIHAO simulation suite (Wang et al. 2015), and are part of the
NIHAO-UHD suite (Buck et al. 2020, 2019a). The simulations
were performed with the smooth-particle hydrodynamics solver
GASOLINE2 (Wadsley et al. 2017). They are both spiral disk
galaxies with bulges, and were bulge dominated until redshift
z� 1, with prominent stellar disks forming about 7–8 Gyr ago
(Buck et al. 2020). Chem2d has a stellar particle mass of
0.093× 105 Me, while Chem15d has a stellar particle mass of
1.06× 105 Me. For more details, see Buck et al. (2020) for
g7.55e11 and Buck et al. (2021) for g8.26e11.7

There are two main differences between the simulations:
their resolution and chemical enrichment prescription. As seen
from the particle masses, Chem2d has a higher mass resolution
while Chem15d is at fiducial resolution. However, NIHAO
galaxies are numerically well converged, so for the purpose of
this work the resolution difference should not matter. The other
difference is a detail in the numerics. Chem15d has an updated
chemical enrichment prescription as described in Buck et al.
(2021), which allows us to trace the 15 elements investigated
here. This does not affect the global properties of the galaxy
such as stellar mass, star formation history, or disk size much.
One other difference is that the two galaxies have slightly

different formation histories as they are two different realiza-
tions of Lambda cold dark matter (ΛCDM) initial conditions.
This mainly affects the accretion history and the final stellar
mass or disk size. However, what is important for this work is
that the stellar disk properties of these simulations, such as
stellar mass, size, and rotation, agree with observations of the
Milky Way and local galaxies (Buck et al. 2020). Furthermore,

7 The redshift zero snapshot and halo catalog of the Chem2d simulation is
publicly available for download here: https://tobibu.github.io/##sim_data.
Additional files, e.g., the birth positions and higher-redshift snapshots, as well
as the Chem15d simulation snapshots, can be shared upon request.
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the age and Rbirth distribution in the [α/Fe]–[Fe/H] abundance
plane is very similar to that observed in the Milky Way (e.g.,
Lu et al. 2021; Minchev et al. 2018).

Chem2d has abundance information for [Fe/H] and [O/Fe]
while Chem15d has the abundances of 15 elements from five
different families, five iron peak elements (Fe, V, Cr, Mn, Co),
two light elements (C, N), two light odd-Z elements (Al, P),
five α-elements (O, Mg, S, Si, Ne), and one s-process element
(Ba). Both simulations show a bimodality in the [α/Fe]–[Fe/
H] plane. The high- and low-α sequences in both simulations
are a consequence of a gas-rich merger; the high-α sequence
evolves first in the early galaxy, while the low-α sequence
forms after the gas-rich merger dilutes the interstellar medium’s
metallicity (Buck 2020).

2.1. Selection Cuts

We focus our analysis on the present-day disk. We first
select stars that overlap in space with the disk by imposing
limits of |z|� 0.5 kpc and 4 kpc� RGAL� 12 kpc, though our
results are consistent for other spatial cuts. We then determine
stars that are current disk members using three-dimensional
velocity space. We model a two-component Gaussian mixture
model in (vθ, vr, vz), similar to the approach taken by Buck et al.
(2019b) and Obreja et al. (2018a) to model simulations in
kinematic space using Galactic Structure Finder (GSF; Obreja
et al. 2018b), and define disk stars to have a Mahalanobis
distance less than 2 from the center of the corresponding
Gaussian distribution. Figure 1 shows these selection cuts in
the equivalent Toomre diagram and x− y plane for both

simulations. Finally, we do an additional cut of Rbirth� 15 kpc
to ensure we are not looking at infalling debris.
Additionally, since the abundances cover different ranges,

we make quality cuts on our abundance data in the scaled
([Fe/H], [X/Fe]) space, where the transformed abundances
have mean 0 and a standard deviation of 1. Since the goal of this
paper is to focus on global properties between abundances, age,
and Rbirth, we remove outliers by only selecting stars that have
scaled abundances between –4 and 4. Our final sample sizes are
229,045 and 44,359 particles for Chem2d and Chem15d,
respectively.

2.2. Birth Properties in the Abundance Plane

Figure 2 shows the simulation data in the [α/Fe]–[Fe/H]
plane after the selection cuts discussed above. Due to the
formation history, both simulations have obvious trends in
Rbirth and age (middle and right columns). For a given value of
[α/Fe], Rbirth increases as [Fe/H] decreases. Similarly, for a
given value of [Fe/H], age increases as [α/Fe] increases. As
discussed in Buck (2020), the horizontal age gradient and the
diagonal radius separation in [α/Fe]–[Fe/H] are simply a
reflection of star formation in the disk happening at different
radii, where metallicity decreases with increasing radii.
The left column of Figure 2 shows the density structure of

the two simulations. For Chem2d (top-left), there are density
ridges which follow along different age tracks, whereas there is
no noticeable substructure in Chem15d (bottom-left), pre-
sumably due to its lower mass resolution. The left panel of
Figure 2 also shows that the footprint of Chem15d is different

Figure 1. Selection cuts of the (top) Chem2d, and (bottom) Chem15d simulations in the (left) velocity and (right) spatial planes. The black circle in the Toomre
diagram marks where we defined the separation for the kinematically different disk and halo stars. Spatially, we define disk stars to have |z| � 0.5 kpc and
4 � RGAL � 12 kpc, shown in the right of the figure.
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than Chem2d. Most noticeably, the spread in this plane
primarily captures high-α stars for Chem15d. The structural
differences between the [α/Fe]–[Fe/H] planes of Chem2d and
Chem15d are due to slight differences in their formation
history (discussed above) and the different set of chemical
yields for chemical enrichment (see Buck et al. 2021 for
discussion on the impact of yield tables and tracks in this
abundance plane).

3. Clustering Methods

We focus on two different clustering methods: agglomera-
tive hierarchical clustering using Ward’s minimum variance
criterion (Ward 1963) and EnLink (Sharma & Johnston 2009).
While both are nonparametric approaches, hierarchical cluster-
ing has the advantage of being simpler with only one tuning
parameter, the distance metric. On the other hand, EnLink
needs two input parameters, but is able to fit complex structures
since it has a locally adaptive distance metric.

Unlike other clustering methods, hierarchical clustering and
EnLink are nonparametric and thus do not force clusters to fit
specific distributions. Additionally, other clustering methods,
such as K-means (Hartigan & Wong 1979), require prior
knowledge for how many clusters comprise the data, whereas
the two methods focused on in this work do not. Particularly in
the high-dimensional space of Chem15, where we cannot
visualize all 15 abundance dimensions at once, choosing the
wrong number of clusters could give rise to misleading results
for a method requiring the number of clusters beforehand.

3.1. Hierarchical Clustering: Tree-based Clustering with a
Fixed-distance Metric

Following the same methodology Ratcliffe et al. (2020) used
with observational red clump DR14 APOGEE data, we use

agglomerative hierarchical clustering using Ward’s minimum
variance criterion (Ward 1963) as one of the ways to combine
the most chemically similar stars. Specifically, we use the
Ward2 algorithm described in Kaufman & Rousseeuw (2009)
and Murtagh & Legendre (2014). We conceptually describe the
algorithm here, and refer the reader to Ratcliffe et al. (2020) for
a more in-depth explanation.
The algorithm begins with each star as its own cluster, and at

each step we combine the pair of clusters that leads to a
minimum increase in total within-cluster variance until only
one large cluster containing all the stars remains. The output is
a tree showing the combination of groups at each step, called a
dendrogram. Thus, the user decides the number of clusters to
separate the data into after seeing the linking structure of
the data.

3.2. EnLink: Density-based Clustering with an Adaptive Metric

EnLink is a nonparametric hierarchical clustering algorithm
built on a locally adaptive distance metric and hence able
to identify complex structures in the data. The full data set is
first divided via a binary-partitioning algorithm which uses an
entropy criterion to preferentially bisect dimensions that contain
maximum information (“EnBid”; Sharma & Steinmetz 2006).
This approach allows a nonparametric definition of “local”
regions in the data set from which the adaptive metric, with
flexible scales and orientations, can then be derived (see Sharma
& Johnston 2009 for full details). It is this metric that defines the
distance between particles subsequently.
EnLink partners the adaptive distance metric machinery with

IsoDen (Pfitzner et al. 1997), which is a density-based
clustering algorithm. Conceptually, clusters can be thought of
as regions around high-density peaks that are separated from
one another by lower-density regions. Thus, as we lower the

Figure 2. The [α/Fe]–[Fe/H] plane of (top) Chem2d , and (bottom) Chem15d colored by (left) density, (middle) birth radius, and (right) age. The two simulations
have a different footprint in this abundance plane (discussed in Section 2), but both clearly have Rbirth and age trends due to their formation history.
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isodensity contours when examining a high-density region, we
stay within the cluster until we encounter a lower-density
region that connects to another high-density region. Then, as
the isodensity contour continues to lower, a new group
encompassing both clusters is formed. Continuing in this
fashion forms a hierarchy of density-based parent–child
clusters.

EnLink has two user-specified parameters: the number of
nearest neighbors used in calculating density (kden) and the
threshold significance level when comparing the high and low
density levels of parent–child clusters (Sth). Since the goal of
our analysis is not to find the best clustering but rather to
investigate the stability of our results, we choose to vary kden
from 30 to 1000, and Sth is such that the expected number of
groups due to Poisson noise is 0.5, 1, and 2. We did not
observe major differences in our results.

4. Results I: Abundance Clusters form Groups of (Rbirth,
Age)

In this section, we investigate the birth properties of groups
defined in a two-dimensional (Chem2d; Section 4.1) and 15-
dimensional (Chem15d; Section 4.2) chemical abundance
space. Since the goal of this work is to explore the ability of
using abundances to get to birth properties, we measure this
effectiveness by quantifying the separation (conversely over-
lap) between groups in (age, Rbirth) for two to 15 clusters
determined using both Chem2d and Chem15d.

4.1. Two Abundances Tag Distinct Ages and Rbirth

As mentioned in Section 3.1, hierarchical clustering
produces a dendrogram showing how stars in the abundance
space combine, starting from each star being its own group to
one cluster containing every star. After the linking structure is
determined, the user then specifies how many groups to
separate the sample into. Walking down the tree, and thus
increasing the number of clusters, corresponds to one group
being separated to form two new clusters at each step. For a
given number of k groups defined in the two- or 15-
dimensional abundance space, we determine the contour level
that contains 50% of the stars within each abundance group
after projecting into the age–Rbirth plane. We then calculate the
percent that each 50% contour level overlaps with the other
k− 1 group’s 50% contour levels by laying down a fine grid
and comparing the number of points in just the ith group to the
number of points that fall in more than just the ith group. For
the ith group, the overlap percentage is defined as the percent
of area that is common between the 50% contour region of the
ith group and the 50% contour regions of the other k− 1
groups.

The top-left panel of Figure 3 shows the median of these
overlap percentages and standard deviation of the k overlap
percentages as a function of the number of groups found in
Chem2d using hierarchical clustering. We see that groups
defined solely using two abundances show consistently low
overlap in birth time and space for up to 10 groups at the 50%
contour level (and up to seven groups at the 75% contour level,
which is not shown).

The middle and right panels of the top row in Figure 3 show
the seven groups in the [α/Fe]–[Fe/H] and Rbirth–age planes at
the 50% contour level. We can see that the groups found using
two abundances separate diagonally, both as a function of age

and Rbirth. We believe that this primarily is a consequence of
formation history, as the low-α stars have gradients in
abundances, age, and Rbirth.

4.1.1. Using EnLink to Leverage Density Structure in Chem2d

In the two-dimensional abundance space of Chem2d, we can
see streaks of higher-density regions along the different age
bins (see top-left of Figure 2). Hierarchical clustering does not
leverage the density of the simulation in abundance space and
thus is unable to capture the streak formations (see top-middle
of Figure 3). Therefore, to include this structure as information
in assignment of cluster groups, we employ a density-based
clustering method with an adaptive distance metric to use the
ridge-like structure in association of groups.
As discussed in Section 3.2, EnLink has the number of

nearest neighbors used to determine the density at a point and
the maximum number of spurious clusters created by noise as
input parameters. We find that the group separation in the
age–Rbirth plane is fairly stable when we focus on allowing
either 0.5 or 1 spurious clusters and 30 to 1000 nearest
neighbors, with the majority of EnLink groups having a
median overlap percent of below 25% at the 75% contour level,
and near 0% at the 50% contour level.
Figure 4 shows the 50% contours in the abundance and

age–Rbirth planes for seven groups and parameter settings 260
nearest neighbors and a maximum of one spurious cluster. We
can clearly see that EnLink captures the streaks of overdensity
in the [α/Fe]–[Fe/H] plane better than hierarchical clustering,
and in doing so we see better separation in the age–Rbirth plane,
with a median overlap percentage of only 1%. Since EnLink
traces the higher-density ridges, and the ridges trace different
age bins, the group separation in the age–Rbirth plane no longer
follows the diagonal trends given by hierarchical clustering.
The right panel of Figure 4 shows that groups which follow
along the same age track (e.g., the middle-aged blue, orange,
and green groups), have similar ages and are separated as a
function of birth radius. This causes the blue and green groups
to flip from the groups found using hierarchical clustering, but
this is an inconsequential difference between the two clustering
methods. For an easier way to directly compare the results of
hierarchical clustering and EnLink in Chem2d, please see
Figure 18 in the Appendix.
Each EnLink group primarily lives in a unique birth time and

place, though there is some overlap with the middle-aged
groups, possibly due to not fine tuning the algorithm. Overall,
we conclude that for the high-resolution Chem2d simulation,
using a density-based method with an adaptive metric is
desirable for the best results.

4.2. Additional Nucleosynthetic Families and Abundances
Provide More Information about Birth Properties

So far we have demonstrated that just two abundances
([α/Fe] and [Fe/H]) can trace separate ages and birth radii. We
now investigate how additional abundances, including addi-
tional nucleosynthetic families, strengthen this result. The list
of abundances and their families is given in Section 2. Due to
the difficult problem of estimating density in a high-dimen-
sional space, in addition to the issue of tuning the algorithm, we
do not use EnLink to cluster in 15 dimensions, and instead
focus on hierarchical clustering.
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As shown in the middle-left panel of Figure 3, groups
defined in the chemical space of 15 abundances show more
separation in the age–Rbirth plane than the groups defined in the
two-dimensional abundance space of Chem2d. These exhibit
separation for 13 groups at the 50% contour level, and eight
groups at the 75% contour level (not shown). As shown in the
middle and right columns of the middle row of Figure 3, the
groups comprised of older stars (which trace the high-α stars)
primarily show separation as a function of age, whereas the
younger low-α stars show separation in both Rbirth and age.
This shows that high-α stars were all born near the Galactic
center, whereas the low-α stars were born at different radii and
times throughout the galaxy.

Comparing these results to Chem2d (top-left of Figure 3),
we see that groups defined in the 15-dimensional abundance
space of Chem15d using hierarchical clustering overlap less in
age and Rbirth. In particular, for up to nine groups, the 15-

dimensional groups are predominantly distinct in birth time
and space at the 50% contour level, whereas in two dimensions
the groups have some overlap even for as few as four groups.

4.3. Comparing Groups in Two Dimensions and 15
Dimensions

In the previous section (Section 4.2) we showed that groups
defined in the 15-dimensional abundance space of Chem15d
showed more separation in age and Rbirth than groups defined
in the two-dimensional abundance space of Chem2d. Here we
show the results of clustering in just the [α/Fe]–[Fe/H] plane
of Chem15d are consistent to those of Chem2d.
The bottom-left of Figure 3 shows that the amount that

abundance groups overlap in the age–Rbirth plane is similar
between Chem2d (red) and the [α/Fe]–[Fe/H] plane of
Chem15d (black, labeled “projected”). As the simulations are

Figure 3. Left: the median overlap percentage for groups in the age–Rbirth plane as a function of the number of groups determined by hierarchical clustering for (top)
Chem2d, and (middle) Chem15d. Each point is determined by calculating the median percent each group overlaps with the other groups at the 50% contour level in
the age–Rbirth plane. The gray ribbon represents one standard deviation about the median overlap percentages. The 50% contour lines of groups projected into the
(middle) [α/Fe]–[Fe/H] plane, and (right) age–Rbirth plane. There are seven and eight groups for Chem2d and Chem15d, respectively. The bottom row shows the
results for clustering in only the [α/Fe]–[Fe/H] plane of Chem15d (labeled “Projected”) in comparison to clustering in the full 15-dimensional chemical space of
Chem15d and Chem2d.
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split into more groups, both consistently show less distinction
in (age, Rbirth). On the other hand, the groups defined in the full
15-dimensional abundance space of Chem15d retain separate
ages and birth radii for up to nine groups. This shows that
more separate birth information is retained in abundance
groups when more abundances are included, and therefore we
claim abundance groups being more separate in age and Rbirth

is due to additional abundance information and not an artifact
of different simulation history or resolution.

Figure 5 compares eight groups defined in the [α/Fe]–
[Fe/H] plane of Chem15d to eight groups defined in the full
15-dimensional abundance space of Chem15d. The groups are
arranged in order of age, with group 1 being the oldest and
group 8 being the youngest. The oldest groups share the most
stars between the two simulations, whereas the middle-aged
and youngest groups are more muddled.

4.4. A Grid in [α/Fe]–[Fe/H] Separates Birth Properties Less
Effectively

So far we focused on how chemically similar stars differ in
birth time and space using clustering methods. Now we give
motivation for why use of a clustering method is needed for
grouping stars.

Figure 6 shows the median and standard deviation of the
percent group overlap for both Chem2d and Chem15d when
separating the stars using different grouping methods. We
compare hierarchical clustering with laying down a Cartesian
grid in the [α/Fe]–[Fe/H] plane. The number of [α/Fe]–
[Fe/H] bins are chosen to produce four, seven/eight (for
Chem2d/Chem15d respectively), and 12 groups. We also
show the results of EnLink for Chem2d. The left panel of
Figure 6 shows that when only two dimensions of abundance
information are known, we do not gain any more knowledge of
birth properties from using a simple clustering method than if
we were to create bins by laying down a Cartesian grid across
the [α/Fe]–[Fe/H] plane. The groups retain more separate
birth properties when leveraging density with an adaptive
distance metric, however the errors are higher than that of
binning and hierarchical clustering.

The right panel of Figure 6 reveals that when higher-
dimensional abundance information is available, there is a
noticeable difference between only looking at stars separated
using a grid in [α/Fe]–[Fe/H] versus using a clustering method
in the full abundance space. Not only does clustering in 15
dimensions produce less overlap in the age–Rbirth plane, but
based on the smaller standard deviation, groups defined using
hierarchical clustering produce consistently small overlap
between groups whereas groups defined by binning in the
[α/Fe]–[Fe/H] plane produce a large range of amount of
groups that overlap in birth time and place.
Figure 7 compares the mean and standard deviation of (age,

Rbirth) of each group determined using two different methods:
hierarchical clustering (left) and binning in the [α/Fe]–[Fe/H]

Figure 4. Seven groups found using the density-based nonparametric method EnLink in the two-dimensional abundance space of Chem2d projected into the [α/Fe]–
[Fe/H] and age–Rbirth planes. All stars are assigned to a group, and each contour captures 50% of the stars within the group. The groups now follow the density
ridges discussed in Section 2.2 and show more separation in the age–Rbirth plane than those groups found using hierarchical clustering. The median amount each
group overlaps is 1%.

Figure 5. Comparison of the number of stars shared between eight groups
defined in all 15 abundances versus just ([α/Fe], [Fe/H]) of Chem15d. The
groups are arranged in order of age, with group 1 being the oldest and group 8
being the youngest. The percent of stars shared between groups is determined
by counting the number of stars found in the projected group that are in the 15-
dimensional group, and then dividing by the number of stars in the projected
group.
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plane (right) to create a Cartesian grid. This figure demonstrates
that groups defined using hierarchical clustering preserve
physical interpretation and agree with expected trends, namely
we see a clear metallicity gradient as a function of age for a
given Rbirth when stars are separated using hierarchical

clustering. The trend is not as obvious to see when stars are
separated in the [α/Fe]–[Fe/H] plane with a grid. Additionally,
we see that groups defined using a clustering method tend to
have less overlap, and the overlap they do have is consistent
among nearly all the groups. However, for the groups defined

Figure 6. Each point and error bar represents the median and standard deviation of the amount that groups overlap with one another in the age–Rbirth plane.
Comparing three different ways of combining stars in chemical space (a grid laid out in the [α/Fe]–[Fe/H] plane, hierarchical clustering, and EnLink) shows that if we
only have two abundances available (left), then groups of chemically similar stars determined via hierarchical clustering and gridding on average show similar
separation in the age–Rbirth plane. Leveraging the density in the abundance plane allows for even better separation in birth time and space. When we include more
abundances and nucleosynthetic channels (right), we find that hierarchical clustering done in 15 dimensions yields more distinct groups in age–Rbirth than gridding in
the visual two dimensions. Note that EnLink was inconclusive in 15 dimensions due to the curse of dimensionality and also only reported seven groups for Chem2d,
and therefore no EnLink result is shown for Chem15d or for four and 12 groups for Chem2d.

Figure 7. Seven and eight groups separated using (left) hierarchical clustering (right) and gridding in the [α/Fe]–[Fe/H] plane for (top) Chem2d and (bottom)
Chem15d, respectively, projected into the Rbirth–age plane. Each point represents the mean (age, Rbirth) for each group, colored by the mean metallicity. Error bars
shown are 1σ standard deviations. Groups defined using hierarchical clustering show a metalicity gradient for a given Rbirth, suggesting that the groups are physically
meaningful. Groups defined in mono-[α/Fe]–[Fe/H] bins do not show a metalicity gradient, and have larger dispersions in age.

8

The Astrophysical Journal, 924:60 (20pp), 2022 January 10 Ratcliffe et al.



via a grid, the overlap between groups is irregular, with some
groups being mainly separate and others completely over-
lapping multiple groups.

Additionally, particularly for Chem15d , the age dispersion
for each group when defined using hierarchical clustering is
much smaller than when groups are separated using a grid.
This again shows that the groups found using hierarchical
clustering represent different physical groups in time (i.e., the
groups have differing properties in birth age and location).
Establishing a connection between those groups and star
formation episodes or satellite passages triggering star forma-
tion can be done in future work.

5. Results II: Clustering in Observational Data

Section 4 showed that under certain formation conditions
and no observational limitations that abundances trace stellar
birth information Rbirth and age. In this section we examine
some of the consequences of observational limitations.

5.1. Incorporating Measurement Uncertainty

Current-day element abundance measurements are reported
with uncertainties of ≈0.02–0.05 dex (Ahumada et al. 2020;
Jönsson et al. 2020). Consequently, we examine how the
clustering changes once we incorporate errors in the chemical
abundances and how this impacts our ability to trace birth
properties with observational data.
For each star in both Chem2d and Chem15d , we redraw a

new set of element abundances, each from a Gaussian
distribution where the standard deviation is representative of
the measurement uncertainty. We test two precision regimes:
σerr= 0.02 and 0.05 dex. The left column of Figure 8 shows the
overlap in the age–Rbirth plane of groups defined in Chem2d
(top) and Chem15d (bottom) when the abundances are
modified with an equivalent of 0.02 dex error in each
abundance direction (black points and line). With the current
best observational error of σerr= 0.02 dex, the groups defined
in both the two-dimensional and 15-dimensional abundance
space retain separate birth properties, similar to the overlap

Figure 8. The black points and line correspond to the median percent that groups defined in an error-convolved (top) two-dimensional and (bottom) 15-dimensional
abundance space overlap in the age–Rbirth plane. For each star, new abundance measurements are drawn from a normal distribution with the true abundance value as
the mean and a standard deviation of (left) 0.02 dex and (right) 0.05 dex. The gray ribbon captures one standard deviation about the median percent that groups
overlap in the age–Rbirth plane. When simulating errors of 0.02 dex, groups still stay separated in the age–Rbirth plane and the separation is comparable to that given
by groups found with no abundance error (gray points and line). Adding an error of 0.05 dex in each dimension affects our ability of finding separate birth information
slightly more in Chem2d than Chem15d.

9

The Astrophysical Journal, 924:60 (20pp), 2022 January 10 Ratcliffe et al.



found when the simulations have no error added (gray points
and line). When abundances are redrawn with observational
errors of σerr= 0.05 dex for each data point (right column), we
find that the majority of groups from the higher-dimensional
simulation retain more separate birth information compared to
those found in Chem2d.

5.2. Modifying the Sample Size

While current large surveys have captured many millions of
stars, we have so far examined only about 30,000 stars with
precise abundance measurements, within a narrow evolutionary
state (e.g., APOGEE DR14 RC catalog; Bovy et al. 2014). To
test more generally how useful chemical abundances are for
linking to birth properties, we need to examine the impact of
sample size.

So far in this work, we have been working with ∼229,000
and ∼44,000 star particles for the Chem2d and Chem15d
simulations, respectively. Now we examine how the groups
defined in abundance space, both with and without the addition
of errors, change in the age–Rbirth plane for a random
subsample of 30,000 stars throughout the whole disk.
Figure 9 shows the percent overlap for both the subsampled
Chem2d (red) and subsampled Chem15d (blue) with no error
(left), the equivalent of 0.02 dex error (middle) and 0.05 dex
error (right) in each dimension. In order to test the consistency
of these results, we subsample with 50 replications. The mean
and standard deviation of the median percent overlap are
shown as a point and ribbon.

We can see from Figure 9 that as error increases, the amount
the Chem2d groups overlap in the age–Rbirth plane also
increases. This indicates that for the sample size and error used
in paper I of this series (Ratcliffe et al. 2020), only two
abundance dimensions are not enough to recover separate birth
time and place groups observationally for more than ≈6
groups.

On the other hand, the groups in the subsampled Chem15d
are less affected by error than the subsampled Chem2d . We
can see that as error increases, the amount each group overlaps
with other groups in the age–Rbirth plane stays more consistent
than the groups in the subsampled Chem2d. While the groups
from both simulations trace less birth information in the
presence of subsampling, we see that the recovery of separate

birth place and time groups is still possible with the inclusion
of more abundances and nucleosynthetic families, especially
for a smaller number (�≈10) of groups.

6. Results III: Modeling How Observable Stellar Properties
Relate to Birth Properties

In the previous sections, we showed that groups in
abundance space occupy different regions in birth time and
space. Now we quantify how chemical abundances relate to age
and Rbirth.
The left panel of Figure 10 shows the [Fe/H] running mean

of Chem2d across Rbirth, separated and colored by age bins. In
order to visually examine if an age–abundance–Rbirth relation-
ship exists, we examine running [X/Fe] means of solar
metallicity stars (which are taken to be stars within the gray
band) as a function of Rbirth, divided into age bins. The right
panel of Figure 10 shows that for Chem2d, there is a strong
age–[α/Fe] relation in solar metallicity stars that is approxi-
mately quadratic for older stars and linear for younger stars.
Thus, given a fixed [Fe/H], we anticipate that ages can be
determined from abundances. Similarly for Chem15d shown in
Figure 11, each age group has its own unique polynomial trend
in [X/Fe]–Rbirth.
This visual analysis done in Figures 10 and 11 leads to the

conclusion that ages can be determined from abundances alone.
To quantify this relationship, we use a simple second-order
polynomial to estimate age from ([X/Fe], [Fe/H]). The model
for Chem2d is
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[ ] [ ] [ ]
[ ]

age a a

a a
a a

Fe H Fe
Fe H Fe Fe H

Fe ,
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2

2
2

3 4

5 0

a
a

a
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+ ´ +
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where the ai’s are the coefficients determined using a training
set that is 75% the size of the data set. The model for Chem15d
is similar, however with the inclusion of more abundances. The
left column of Figure 12 shows the inferred age from the
polynomial regression versus the true age of stars in the
simulation test set. Even with just two abundances (top row),
we are able to estimate age within ±0.52 Gyr. With the
addition of more abundance information (bottom row), we find

Figure 9. The mean percent of 50 subsampling replications that groups defined in a 30,000 stellar sample of an error-convolved two-dimensional (red) and 15-
dimensional (blue) abundance space overlap in the age–Rbirth plane. The errors added are equivalent to the observational best case scenario (middle, 0.02 dex) and
average observational error (right, 0.05 dex) in each dimension. Left has no error added. The ribbon shows one standard deviation in percent overlap for the 50 Monte
Carlo simulations.
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that we are able to accurately estimate age from 15 abundances
to within ±0.06 Gyr.

We also wish to test how well we can quantify the
relationship between age, Rbirth, and abundances. Given the low
Rbirth dispersion in the [Fe/H]–age plane shown in Figure 13,
we use a second-order polynomial model to estimate Rbirth from
([Fe/H], age). The model for both simulations is

[ ] [ ]
[ ]

r a a a

a a a

Fe H age Fe H age
age Fe H ,

birth 1
2

2
2

3

4 5 0

= + + ´
+ + +

where the ai’s are the coefficients determined using a training
set that is 75% the size of the data set. The right panels of
Figure 12 reveal that we can predict the test set birth radii to
within ±1.24 kpc for Chem2d (top) and within ±1.17 kpc for
Chem15d (bottom). The inclusion of the additional abun-
dances increases the accuracy by 0.06 kpc for Chem15d and
only 0.01 kpc for Chem2d. We again see that additional
abundance information helps inform more about stellar birth
properties. However, the difference is not as drastic as it was in
estimating age.

While we do not fit for the best model, we believe that this
simple second-order polynomial relationship between age,
abundances, and Rbirth cannot be drastically improved upon.
For a given value of [Fe/H], [X/Fe], and age, we find that the
intrinsic dispersion in Rbirth is ≈1.1 kpc for Chem15d and
≈1.2 kpc for Chem2d. Thus, ages and abundances alone will
not be able to estimate Rbirth more accurately. This could be due
to asymmetries causing abundance distributions to not lie in
perfect annuli about the Galactic center, reducing the tightness
of the relationship between Rbirth and abundances.

With the inclusion of 0.05 dex abundance error, we find that
our age estimates decrease in accuracy to about ±0.76 Gyr for
Chem15d. With the addition of 0.05 dex abundance error and
age error of 30%, the Rbirth accuracy of Chem15d decreases to
±1.31 kpc. This shows that according to our model, estimating
Rbirth from abundances and age is less sensitive to noise than
estimating age from abundances.

7. Discussion: Implications for Future Applications to the
Milky Way

Paper I of this series (Ratcliffe et al. 2020) used hierarchical
clustering in the 19-dimensional abundance space of 30,000 red
clump stars in the Milky Way cataloged by APOGEE DR14. In
that work, we found that up to six groups have statistically
significant different mean ages and distinct spatial distributions.
The goal of this work is aimed to interpret those results and
determine if groups observed in chemical space correspond to
physically meaningful groups. With the use of simulations, we
are able to test the potential and current ability of linking
current stellar properties ([Fe/H], [X/Fe]) to their birth
properties (Rbirth, age). We wish to emphasize that the stellar
groups found by clustering algorithms in this work represent
stars that are chemically similar in abundance space which can
be linked to different (Rbirth, age); they do not represent
individual stellar birth clusters.

7.1. Empirical Context

The simulations used in this work (g7.55e11 with two
abundances and g8.26e11 with 15 abundances) are Milky Way
analogs from the NIHAO-UHD suite. Both simulations were
bulge-dominated systems up to redshift z� 1 with prominent
stellar disks forming 7–8 Gyr ago. The formation of the α
sequences was due to a gas-rich merger, with the high-α sequence
forming during the early galaxy and the low-α sequence forming
after the merger. The main differences between these simulations
are a slightly different formation history (sampling valid formation
histories of Milky Way–like galaxies) as well as an updated
chemical enrichment prescription for the Chem15d model galaxy.
The modifications made to chemical enrichment prescriptions are
described in Buck et al. (2021) and enabled us to follow 15
different elements while at the same time leaving global galaxy
properties such as star formation history, stellar mass, and disk
size unaffected. We believe that these simulations are representa-
tive of the Milky Way due to their formation history and age
gradient in the abundance plane.
Even though simulations provide us with particles and not

individual stars, they allow us to examine the relationship

Figure 10. Left: the running mean of [Fe/H] across Rbirth colored by the associated 1 Gyr age bin for Chem2d. The black lines and gray area mark off the solar
metallicity stars, which we consider to be ±0.05 dex in [Fe/H]. Right: the running mean of [O/Fe] of the solar metallicity stars across Rbirth colored by age bin
selected from within the horizontal lines at left. We see that for a given bin of metallicity, stars of different ages separate out and form either approximately quadratic
or linear relations.
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between observable chemical properties, age, and birth
location. Thus we focus on disk particles in our work.

7.2. Clustering Approaches

In this work, we focused on three ways of grouping stars:
hierarchical clustering, EnLink, and binning in the [α/Fe]–[Fe/H]
plane. Section 4.4 shows that binning in just ([Fe/H], [α/Fe])
does not effectively link abundance information to birth

properties, especially when there is higher-dimensional abundance
data available.
Of the clustering methods we explore, hierarchical clustering

is advantageous for observational work. Section 4.1.1 shows
that leveraging density with an adaptive distance metric in
Chem2d is the best way for chemical groups to correspond to
distinct groups in the age–Rbirth plane. However, due to the
curse of dimensionality, leveraging density in a 15-dimensional
space is difficult and unrealistic. We attempted to run EnLink

Figure 11. Top-left: the [Fe/H] running mean across Rbirth colored by age bin for Chem15d. The black lines and gray area mark off the solar metallicity stars, which
we consider to be ±0.05 dex in [Fe/H]. All other plots show the running mean of [X/Fe] of the solar metallicity stars across Rbirth colored by age. Similar to Chem2d
shown in Figure 10, solar metallicity stars of different ages separate into approximately quadratic or linear curves.
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in the 15-dimensional chemical abundance space of Chem15d;
however, the clustering results were inconclusive and did not
define many stars to a cluster. Additionally, for EnLink (or any
other density-based clustering method) to be used correctly on
Milky Way catalogs, the survey-selection function would need
to be accounted for, as the selection function would possibly
alter the distribution of stars in abundance space. Furthermore,
we found that EnLink performed poorly when the density
structure in the two-dimensional abundance plane of Chem2d
vanished after the addition of observational uncertainty.

7.3. Likelihood of Success: Comparison to Other Simulations

In this paper, we have focused on the relationship between
abundances and birth properties of stars when the chemical
bimodality is caused by a merger and successive dilution of the
interstellar medium. We also consider the relationship when a
galaxy is formed by clumpy star formation8. We examine the

N-body and smooth-particle hydrodynamics simulation of the
formation of an isolated galaxy outlined in Beraldo e Silva
et al. (2021). Star-forming clumps at high redshift start forming
low-α stars, then quickly self-enrich in α-elements due to their
high-star-formation-rate density and produce a high-α
sequence while a low-α sequence is produced by radially
distributed star formation. After about 4 Gyr, the clumps
become less efficient, and the high-α sequence stops growing
(Clarke et al. 2019). For more detailed information of the
simulation, see Beraldo e Silva et al. (2021) and Fiteni et al.
(2021).
Figure 14 shows the [α/Fe]–[Fe/H] plane for a 230,000

particle subsample of simulation M2_c_nb, which undergoes
clumpy star formation. Similar to Chem2d and Chem15d, there
is a linear trend between the abundances and Rbirth, where Rbirth

decreases as [Fe/H] increases. Age, however, does not appear
to have a simple relationship between the two abundances. For
instance, age decreases as [α/Fe] decreases for solar metallicity
stars at higher values of [α/Fe], but the relationship is reversed
for lower [α/Fe].
We find that in this simulation, age and [Fe/H] are able to

predict Rbirth within ±0.72 kpc, about 40% better than the

Figure 12. Left: the inferred age of (top) Chem2d and (bottom) Chem15d using a second-order polynomial in ([Fe/H], [X/Fe]) plotted against the true age of the
star. With the additional abundance information provided in the Chem15d simulation, we are able to accurately and precisely estimate age, showing that abundances
are chemical clocks. Right: inferred Rbirth of (top) Chem2d and (bottom) Chem15d using a second-order polynomial in ([Fe/H], age) plotted against the true Rbirth of
the stars. With just [Fe/H] and age, we can infer a star’s Rbirth to within just over 1 kpc.

8 Note, the galaxies simulated within the NIHAO project also go through a
clumpy phase (Buck et al. 2017) in agreement with observed clumpy galaxies
at high redshift. However, for the NIHAO feedback scheme those clumps are
agglomerations of young stars and only appear in stellar light not in
stellar mass.
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precision for the simulations focused on in this work. Again,
we also see that the addition of other abundances does not
notably change our ability to estimate Rbirth, where the accuracy
only increases by 0.01 kpc when [α/Fe] is included in the
regression. This shows that the formation history in all three
simulations sets an underlying relationship with age, [Fe/H],
and Rbirth, where if we know the metallicity and age of a star,
we can determine where it was born.

However, while [Fe/H] and age are a link to Rbirth, in this
particular simulation the star formation history gives rise to a
more complex relationship between the abundances ([Fe/H],
[α/Fe]) and age (Figure 14). Therefore, chemically similar
groups of stars identified using hierarchical clustering no longer
correspond to separate groups in the age–Rbirth plane in this
scenario.

In order to determine the ability to extend our conclusions to
the Milky Way, we compare the Milky Way’s age and age
dispersion in the [α/Fe]–[Fe/H] plane to the three simulations
with simulated “observational” ages by redrawing from a
normal distribution with their true age as the mean and a
standard deviation of ≈2.6 Gyr, the median uncertainty of low-
α stars from the Lu et al. (2021) catalog. When simulating
observational ages for Chem2d and Chem15d , the dispersion
in age across [α/Fe]–[Fe/H] is uniformly low (see middle
rows of Figure 15), while M2_c_nb has an increase in age
dispersion as [α/Fe] decreases (see bottom row of Figure 15).
The Milky Way (shown in the top row of the same figure using
ages and abundances from Lu et al. 2021) has a consistently
small dispersion in age of about 2–3 Gyr, with the dispersion
being slightly smaller for low ([Fe/H], [α/Fe]), the reverse of

Figure 13. The [Fe/H]–age plane colored by (left) Rbirth and (right) Rbirth dispersion for (top) Chem2d and (bottom) Chem15d. The low dispersion in this plane
indicates that [Fe/H] and age alone can determine Rbirth accurately.

Figure 14. The [α/Fe]-[Fe/H] plane colored by (left) density, (middle) Rbirth, (right) age for the Beraldo e Silva et al. (2021) simulation using clumpy star formation.
The formation history produces quadratic age and Rbirth distributions in the abundance plane, and causes the simple relationship between age, Rbirth, and clustered
abundances to disappear.
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M2_c_nb’s dispersion trends. On the other hand, similar to the
Chem2d and Chem15d simulations focused on in this paper,
the age of the stars in the Milky Way increases as [α/Fe]
increases for a given value of [Fe/H].

The question of which simulation most closely matches the
Milky Way’s star formation history still requires further
investigation. The selection cuts described in Section 2.1
produce different density trends in the [α/Fe]–[Fe/H] plane for
the three simulations and observational data, where some
samples have both high- and low-α stars (e.g., Chem15d ),
while others primarily consist of stars with lower values of

[α/Fe] (e.g., M2_c_nb). There is room for exploration into
how the Milky Way compares to the different [α/Fe]–[Fe/H]
trends each simulation produces with different selection cuts;
however, we find that our results are consistent under different
cuts to capture disk stars.
This exploration shows that resolving distinct birth proper-

ties of chemically similar stars requires a small dispersion in
age and Rbirth trends in the [α/Fe]–[Fe/H] plane. Since the
Milky Way has been shown to have age trends in the [α/Fe]–
[Fe/H] abundance plane with small dispersion, we believe the
conclusions we have drawn in this paper are relevant to the

Figure 15. Top: the Milky Way in the [α/Fe]–[Fe/H] plane using Lu et al.’s (2021) ages and abundances. The right panel shows the standard deviation of ages within
each bin. The ages for (second from top) Chem2d, (third from top) Chem15d and (bottom)M2_c_nb are redrawn from a normal distribution with their true age as the
mean and a standard deviation equivalent to the median uncertainty of low-α stars from the Lu et al. (2021) catalog. Only bins containing at least 10 stars are shown in
each plot above.
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Milky Way. We conclude that the six groups found in our
previous work (Ratcliffe et al. 2020) using hierarchical
clustering in the 19-dimensional APOGEE red clump sample
are expected to have (Rbirth, age) distributions that differ from
each other and reflect a continuous evolution of the disk.

7.4. Limitations and Future Work

There are some limitations to our approach. In Section 5.2
we discuss the effect of subsampling data with observational
errors. However, we do not take into account the complexity of
survey-selection functions. Additionally, in Section 5 we
explore how errors affect our clustering results by adding
0.02 dex or 0.05 dex error to every abundance. Realistically,
though, some abundances are measured more accurately than
others.

While in the previous section we argued that the main
conclusions of this work could be extended to the Milky Way
and that the groups found in Ratcliffe et al. (2020) are expected
to occupy different regions in (age, Rbirth), we do not extend the
numerical relationship between birth properties and abun-
dances (Section 6) to estimate age and Rbirth for stars in the
Milky Way. This extension would require the assumption that
the regression coefficients of the Milky Way are exactly the
same as those used for the simulations. However, abundance
values between simulations and the Milky Way differ as well as
spatial coverage and orbital and structural properties. Our
analysis in Section 7.3 shows that a quadratic regression model
will probably work for the Milky Way, but determining the
coefficients that are appropriate for the Milky Way is beyond
the scope of this work.

Section 7.2 discussed how density-based clustering failed
when a structure vanished due to measurement error or in a
high-dimensional abundance space. For future work, combin-
ing hierarchical clustering with an adaptive distance metric
would be interesting to explore. Partnering an adaptive distance
metric with hierarchical clustering would avoid the problems of
estimating density and determining the best distance metric in a
high-dimensional-abundance space, and could potentially
provide even more striking results.

As simulation resolution continues to increase, in the future
it would also be useful to explore if satellite debris could be
picked up by abundance clustering and complement clustering
analysis done in action space (such as in Wu et al. 2022). In the
simulations we use in this study, only ≈20 stellar particles have
Rbirth� 20 kpc. With future data sets and simulations in mind,
testing to see if accreted material differ in abundance space
could be useful to determine accreted debris in the Milky Way.

8. Summary and Conclusions

Our main results are summarized below:

1. We find with just [Fe/H] and [α/Fe] alone we can trace
separate Rbirth–age groups, with the separation being
more distinct when we include more abundances, as
demonstrated by our 15-element simulation g8.26e11,
where we find nearly completely separate groups for
up to ≈10 groups (Figure 3). Considering current-day
observational uncertainty and sampling constraints,
higher-dimensional abundance data is necessary to trace
birth properties from chemical abundance data. Groups
from the subsampled Chem2d with 0.05 dex error had

substantial overlap with other groups in the age–Rbirth

plane. On the other hand, groups found in the
subsampled Chem15d with 0.05 dex error had almost
no overlap in age and Rbirth when finding six or fewer
groups (Section 5; Figure 9).

2. The groups found in this paper presumably trace not only
separate areas in the age–Rbirth plane, but also link to
different underlying physical properties. Stars separated
by hierarchical clustering preserved a clear metallicity
gradient as a function of age for a given Rbirth, whereas
groups defined by binning in the [α/Fe]–[Fe/H] plane
lost the [Fe/H] gradient and increased their age
dispersion (Figure 7).

3. Chemical clusters of high- and low-α stars separate
differently in the age–Rbirth plane. Groups defined with
low-α stars separate both as a function of age and Rbirth,
showing low-α stars are born throughout the galaxy at
different radii. High-α stars are older (>7 Gyr) and are
born near the Galactic center, but separate as a function of
age (see Figures 3 and 4).

4. Using a simple second-order polynomial regression, we
quantify the relationship between observable abundance
labels and birth property outputs (Section 6). We model
age as a function of ([Fe/H], [X/Fe]), and can infer a
star’s age to a precision of ±0.52 Gyr for Chem2d and
±0.06 Gyr for Chem15d. We also model Rbirth as a
function of ([Fe/H], age), and infer it to a precision of
±1.24 kpc and ±1.17 kpc for Chem2d and Chem15d
respectively.

5. The ability to reconstruct stellar groups born in different
times and places from their abundances is determined by
the formation history of the galaxy. When formation
conditions lead to age and Rbirth trends in the abundance
plane with small dispersion, we find that there is a simple
connection between clustered abundances and separate
birth times and places. Under clumpy star formation,
however, the simple relationship vanishes (Section 7.3).

6. Our comparison of three simulations implies that the low
dispersion of age across the [α/Fe]–[Fe/H] plane of the
Milky Way indicates that the Milky Way’s star formation
history is sufficiently quiet and that clustering in
abundance will correspond to birth associations in time
and location (Figure 15).

We seek to examine how abundance structure links to birth
properties. We find that there is a simple relationship between
age and chemical abundances, which agrees with previous
work (e.g., Ness et al. 2019). Rbirth cannot be tested as we can
do for age; we never have direct access to this quantity in
observations. From our regression, however, we see age and
([Fe/H], [X/Fe]) link us to Rbirth in the simulations. Indeed,
this analytical formalism has been adopted in models of radial
migration (e.g., Frankel et al. 2018; Minchev et al. 2019). We
examine the Rbirth–age distribution further using the idea of
abundance clustering, in which we seek to see if it links to
underlying physical processes.
This work highlights how we might use clustering of high-

dimensional-abundance measurements in large surveys to infer
groups of different birth place and time, and the impact of
measurement uncertainty in working with the observa-
tional data.
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Appendix
Additional Figures

Here we include additional figures that help readers interpret
results. Figures 16 and 17 are abundance–age plots colored by
Rbirth for both Chem2d and Chem15d. These plots are similar
to Figures 10 and 11, however the coloring and x-axis are
switched. Figure 18 allows the reader to make a direct
comparison between the groups found in Chem2d using
hierarchical clustering and EnLink.

Figure 16. Left: the [Fe/H]–age plane colored by Rbirth for Chem2d. The black lines and gray area mark off the solar metallicity stars, which we consider to be ±0.05
dex in [Fe/H]. Right: the running mean of [O/Fe] of the solar metallicity stars across age colored by Rbirth selected from within the horizontal lines at left. For a given
bin of metallicity, stars clearly have a polynomial trend in [X/Fe]–age.
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Figure 17. Top-left: the [Fe/H]–age plane colored by Rbirth for Chem15d. The black lines and gray area mark off the solar metallicity stars, which we consider to be
±0.05 dex in [Fe/H]. All other plots show the running mean of [X/Fe] of the solar metallicity stars accross age colored by Rbirth. Similar to Chem2d shown in
Figure 16, solar metallicity stars of different ages separate into different polynomial curves.
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