11 research outputs found

    Centrosymmetric-noncentrosymmetric Structural Phase Transition in Quasi one-dimensional compound, (TaSe4_4)3_3I

    Full text link
    (TaSe4_4)3_3I, a compound belonging to the family of quasi-one-dimensional transition-metal tetrachalcogenides, has drawn significant attention due to a recent report on possible coexistence of two antagonistic phenomena, superconductivity and magnetism below 2.5~K (Bera et. al, arXiv:2111.14525). Here, we report a structural phase transition of the trimerized phase at temperature, T ≃T~\simeq~145~K using Raman scattering, specific heat, and electrical transport measurements. The temperature-dependent single-crystal X-ray diffraction experiments establish the phase transition from a high-temperature centrosymmetric to a low-temperature non-centrosymmetric structure, belonging to the same tetragonal crystal family. The first-principle calculation finds the aforementioned inversion symmetry-breaking structural transition to be driven by the hybridization energy gain due to the off-centric movement of the Ta atoms, which wins over the elastic energy loss.Comment: 11 pages, 5 figures, Under review as a regular articl

    Enhanced coercivity and emergence of spin cluster glass state in 2D ferromagnetic material Fe3GeTe2

    Full text link
    Two-dimensional (2D) van der Waals (vdW) magnetic materials with high coercivity and high TCT_\text{C} are desired for spintronics and memory storage applications. Fe3_3GeTe2_2 (F3GT) is one such 2D vdW ferromagnet with a reasonably high TCT_\text{C}, but with a very low coercive field, HcH_\text{c} (≲\lesssim100~Oe). Some of the common techniques of enhancing HcH_\text{c} are by introducing pinning centers, defects, stress, doping, etc. They involve the risk of undesirable alteration of other important magnetic properties. Here we propose a very easy, robust, and highly effective method of phase engineering by altering the sample growth conditions to greatly enhance the intrinsic coercivity (7-10 times) of the sample, without compromising its fundamental magnetic properties (TC≃T_\text{C}\simeq210K). The phase-engineered sample (F3GT-2) comprises of parent F3GT phase with a small percentage of randomly embedded clusters of a coplanar FeTe (FT) phase. The FT phase serves as both mosaic pinning centers between grains of F3GT above its antiferromagnetic transition temperature (TC1∼T_\text{C1}\sim70~K) and also as anti-phase domains below TC1T_\text{C1}. As a result, the grain boundary disorder and metastable nature are greatly augmented, leading to highly enhanced coercivity, cluster spin glass, and meta-magnetic behavior. The enhanced coercivity (≃\simeq1~kOe) makes F3GT-2 much more useful for memory storage applications and is likely to elucidate a new route to tune useful magnetic properties. Moreover, this method is much more convenient than hetero-structure and other cumbersome techniques.Comment: 12 pages, 11 figure

    Raman signatures of lattice dynamics across inversion symmetry breaking phase transition in quasi-1D compound, (TaSe4_4)3_3I

    Full text link
    Structural phase transition can occur due to complex mechanisms other than simple dynamical instability, especially when the parent and daughter structure is of low dimension. This article reports such an inversion symmetry-breaking structural phase transition in a quasi-1D compound (TaSe4_4)3_3I at TS∼_S\sim 141~K studied by Raman spectroscopy. Our investigation of collective lattice dynamics reveals three additional Raman active modes in the low-temperature non-centrosymmetric structure. Two vibrational modes become Raman active due to the absence of an inversion center, while the third mode is a soft phonon mode resulting from the vibration of Ta atoms along the \{-Ta-Ta-\} chains. Furthermore, the most intense Raman mode display Fano-shaped asymmetry, inferred as the signature of strong electron-phonon coupling. The group theory and symmetry analysis of Raman spectra confirm the displacive-first-order nature of the structural transition. Therefore, our results establish (TaSe4)3_4)_3I as a model system with broken inversion symmetry and strong electron-phonon coupling in the quasi-1D regime.Comment: Main text - 6 figures, 11 pages, supplementary - 10 figures, 13 page

    High transport spin polarization in the van der Waals ferromagnet Fe4_4GeTe2_2

    Full text link
    The challenging task of scaling-down the size of the power saving electronic devices can be accomplished by exploiting the spin degree of freedom of the conduction electrons in van der Waals (vdW) spintronic architectures built with 2D materials. One of the key components of such a device is a near-room temperature 2D ferromagnet with good metallicity that can generate a highly spin-polarized electronic transport current. However, most of the known 2D ferromagnets have either a very low temperature ordering, poor conductivity, or low spin polarization. In this context, the Fen_nGeTe2_2 (with n≥3n\geq3) family of ferromagnets stand out due to their near-room temperature ferromagnetism and good metallicity. We have performed spin-resolved Andreev reflection spectroscopy on Fe4_4GeTe2_2 (TCurie∼T_{Curie} \sim 273 K) and demonstrated that the ferromagnet is capable of generating a very high transport spin polarization, exceeding 50%\%. This makes Fe4_4GeTe2_2 a strong candidate for application in all-vdW power-saving spintronic devices.Comment: Accepted for publication in Physical Review

    Proximitized spin-phonon coupling in topological insulator due to two-dimensional antiferromagnet

    Full text link
    Induced magnetic order in a topological insulator (TI) can be realized either by depositing magnetic adatoms on the surface of a TI or engineering the interface with epitaxial thin film or stacked assembly of two-dimensional (2D) van der Waals (vdW) materials. Herein, we report the observation of spin-phonon coupling in the otherwise non-magnetic TI Bi2_\mathrm{2}Te3_\mathrm{3}, due to the proximity of FePS3_\mathrm{3} (an antiferromagnet (AFM), TNT_\mathrm{N} ∼\sim 120 K), in a vdW heterostructure framework. Temperature-dependent Raman spectroscopic studies reveal deviation from the usual phonon anharmonicity at/below 60 K in the peak position (self-energy) and linewidth (lifetime) of the characteristic phonon modes of Bi2_{2}Te3_{3} (106 cm−1^{-1} and 138 cm−1^{-1}) in the stacked heterostructure. The Ginzburg-Landau (GL) formalism, where the respective phonon frequencies of Bi2_{2}Te3_{3} couple to phonons of similar frequencies of FePS3_3 in the AFM phase, has been adopted to understand the origin of the hybrid magneto-elastic modes. At the same time, the reduction of characteristic TNT_\mathrm{N} of FePS3_3 from 120 K in isolated flakes to 65 K in the heterostructure, possibly due to the interfacial strain, which leads to smaller Fe-S-Fe bond angles as corroborated by computational studies using density functional theory (DFT). Besides, our data suggest a double softening of phonon modes of Bi2_\mathrm{2}Te3_\mathrm{3} (at 30 K and 60 K), which in turn, demonstrates Raman scattering as a possible probe for delineating the magnetic ordering in bulk and surface of a hybrid topological insulator

    Review of recent progress on THz spectroscopy of quantum materials: superconductors, magnetic and topological materials

    No full text
    Recently, the THz spectroscopy has been efficiently used to investigate varieties of quantum materials, including superconductors, novel magnetic, and topological materials. These materials often exhibit strong correlation and competing interactions between various degrees of freedom, including charge, spins, orbital, and lattice dynamics, which lead to many exotic phenomena and novel phase transitions whose cause–effect correlations are challenging to determine. Whereas probing the ground state’s excitations can unravel the underlying mechanism of these complex phenomena. The characteristic energy scales of different elementary excitations and collective modes in many of these materials are in the THz frequency range. Therefore, THz spectroscopy has become a very effective probe and directly revealed many exciting physics. Many novel phenomena, including exotic quasiparticle excitations in magnetic systems, topological magneto-electric effect, and topological quantum phase transition in three-dimensional topological insulators, are studied with unprecedented success. Here, we review some recent research reports on many-body quantum materials, including superconductors, novel magnetic, and topological materials probed by few popular THz-spectroscopy techniques. We will also briefly discuss the prospects of using THz spectroscopy for observing some exotic quantum phenomena that are still elusive or under investigation

    Aminoisophthalate Bridged Cd(II)-2D Coordination Polymer: Structure Description, Selective Detection of Pd<sup>2+</sup> in Aqueous Medium, and Fabrication of Schottky Diode

    No full text
    Photoluminescence activity of coordination polymers (CPs) has evoked intricate applications in the field of materials science, especially sensing of ions/molecules. In the present study, 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) and 5-aminoisophthalate (HAIPA–) coordinated to Cd(II) to architect a coordination polymer, {[Cd(HAIPA)(tppz)(OH)]·3H2O}n (CP1) which unveils blue emission in an aqueous acetonitrile (98% aqueous) suspension. The emission is selectively quenched by Pd2+ only without interference in the presence of as many as 16 other cations. The structure of CP1 shows the presence of a free –COOH group, and the interlayer (–CO)O(2)···O(7) (OC–) distance, 4.242 Å, along with the π···π interactions (3.990, 3.927 Å), may make a cavity which suitably accommodates only Pd2+ (van der Waal’s radius, 1.7 Å) through the Pd(II)-carboxylato (–COO–Pd) coordination. The stability of the composite, [CP1 + Pd2+] may be assessed from the fluorescence quenching experiment, and the Stern–Volmer constant (KSV) is 7.2 × 104 M–1. Therefore, the compound, CP1, is a promising sensor for Pd(II) in a selective manner with limit of detection (LOD), 0.08 μM. The XPS spectra of CP1 and [CP1 + Pd2+] have proven the presence of Pd2+ in the host and the existence of a coordinated –COO–Pd bond. Interestingly, inclusion of Pd2+ in CP1 decreases the band gap from 3.61 eV (CP1) to 3.05 eV ([CP1 + Pd2+]) which lies in the semiconducting region and has exhibited improved electrical conductivity from 7.42 × 10–5 (CP1) to 1.20 × 10–4 S m–1 ([CP1 + Pd2+]). Upon light irradiation, the electrical conductivities are enhanced to 1.45 × 10–4 S m–1 (CP1) and 3.81 × 10–4 S m–1 ([CP1 + Pd2+]); which validates the highly desired photoresponsive device applications. Therefore, such type of materials may serve as SDG-army (sustainable development goal) to battle against the environmental issues and energy crisis

    Anisotropic magnetodielectric coupling in layered antiferromagnetic FePS 3

    No full text
    We report anisotropic magnetodielectric coupling in layered van der Waals antiferromagnetic FePS3 (Néel temperature TN∼ 120 K) with perpendicular anisotropy. Above TN, while the dielectric response function along the c axis shows frequency-dependent relaxations, in-plane data is frequency independent and reveals a deviation from phonon-anharmonicity in the ordered state, thereby implying a connection to spin-phonon coupling known to be indicative of onset of magnetic ordering. At low temperature (below 40 K), atypical anomaly in the dielectric constant is corroborated with temperature-dependent dc and ac susceptibility. The magnetodielectric response across this anomaly differs significantly for both in-plane and out-of-plane cases. We have explained this in terms of preferential orientation of magnetic antiferromagnetic zigzag alignment, implied by the in-plane structural anisotropy as confirmed by ab initio calculations. Controlling the relative strength of magnetodielectric coupling with magnetic anisotropy opens a strategy for tracking subtle modifications of structures, such as in-plane anisotropy, with potential applications for spintronic technologies
    corecore