439 research outputs found

    Effects of Classroom-Based Resistance Training With and Without Cognitive Training on Adolescents’ Cognitive Function, On-task Behavior, and Muscular Fitness

    Get PDF
    Aim: Participation in classroom physical activity breaks may improve children’s cognition, but few studies have involved adolescents. The primary aim of this study was to examine the effects of classroom-based resistance training with and without cognitive training on adolescents’ cognitive function. Methods: Participants were 97 secondary school students (45.4% females, mean age 15.78 ± 0.44). Four-year 10 classes from one school were included in this four-arm cluster randomized controlled trial. Classes were randomly assigned to the following groups: sedentary control with no cognitive training, sedentary with cognitive training, resistance training without cognitive training, and resistance training with cognitive training. Sessions varied in levels of both cognitive demand and resistance training (i.e., high vs. low) and were administered three times per week for 4 weeks (12 sessions). Inhibition, cognitive flexibility, episodic memory, on-task behavior, and muscular fitness were assessed at baseline and post-test. Linear mixed models were used to examine changes within and between groups. Results: In comparison with the control group, episodic memory improved significantly in the resistance training without cognitive training group (−9.87 units, 95% CI: −17.71 to −2.03, p = 0.014, d = 0.72). There were no group-by-time effects for inhibition or cognitive flexibility. Classroom activity breaks both with and without cognitive demand improved participants’ on-task behavior in comparison with the control and sedentary group. The resistance training programs did not lead to improvements in muscular fitness. Conclusion: Participation in body weight resistance training without cognitive training led to selective improvements in episodic memory. No training effects were found for inhibition or cognitive flexibility. A longer study period may be necessary to induce improvements in muscular fitness and associated changes in inhibition and cognitive flexibilit

    The Benefits of Mutualism: A Conceptual Framework

    Full text link
    There are three general mechanisms by which phenotypic benefits are transferred between unrelated organisms. First, one organism may purloin benefits from another by preying on or parasitizing the other organism. Second, one organism may enjoy benefits that are incidental to or a by-product of the self-serving traits of another organism. Third, an organism may invest in another organism if that investment produces return benefits which outweigh the cost of the investment. Interactions in which both parties gain a net benefit are mutualistic. The three mechanisms by which benefits are transferred between organisms can be combined in pairs to produce six possible kinds of original or ‘basal’ mutualisms that can arise from an amutualistic state. A review of the literature suggests that most or all interspecific mutualism have origins in three of the six possible kinds of basal mutualism. Each of these three basal mutualisms have byproduct benefits flowing in at least one direction. The transfer of by-product benefits and investment are common to both intra- and interspecific mutualisms, so that some interspecific mutualisms have intraspecific analogs. A basal mutualism may evolve to the point where each party invests in the other, sometimes obscuring the nature of the original interaction along the way. Two prominent models for the evolution of mutualism do not include by-product benefits: Roughgarden's model for the evolution of the damsel-fish anemone mutualism and the ‘Tit-for-Tat’ model of reciprocity. Using the conceptual framework presented here, including in particular by-product benefits, I have shown how it is possible to construct more parsimonious alternatives to both models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72439/1/j.1469-185X.1995.tb01196.x.pd

    In planta expression of human polyQ-expanded huntingtin fragment reveals mechanisms to prevent disease-related protein aggregation

    Get PDF
    In humans, aggregation of polyglutamine repeat (polyQ) proteins causes disorders such as Huntington’s disease. Although plants express hundreds of polyQ-containing proteins, no pathologies arising from polyQ aggregation have been reported. To investigate this phenomenon, we expressed an aggregation-prone fragment of human huntingtin (HTT) with an expanded polyQ stretch (Q69) in Arabidopsis thaliana plants. In contrast to animal models, we find that Arabidopsis sp. suppresses Q69 aggregation through chloroplast proteostasis. Inhibition of chloroplast proteostasis diminishes the capacity of plants to prevent cytosolic Q69 aggregation. Moreover, endogenous polyQ-containing proteins also aggregate on chloroplast dysfunction. We find tha

    Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination

    Get PDF
    Antigen recognition by the T-cell receptor (TCR) is a hallmark of the adaptive immune system. When the TCR engages a peptide bound to the restricting major histocompatibility complex molecule (pMHC), it transmits a signal via the associated CD3 complex. How the extracellular antigen recognition event leads to intracellular phosphorylation remains unclear. Here, we used single-molecule localization microscopy to quantify the organization of TCR–CD3 complexes into nanoscale clusters and to distinguish between triggered and nontriggered TCR–CD3 complexes. We found that only TCR–CD3 complexes in dense clusters were phosphorylated and associated with downstream signaling proteins, demonstrating that the molecular density within clusters dictates signal initiation. Moreover, both pMHC dose and TCR–pMHC affinity determined the density of TCR–CD3 clusters, which scaled with overall phosphorylation levels. Thus, TCR–CD3 clustering translates antigen recognition by the TCR into signal initiation by the CD3 complex, and the formation of dense signaling-competent clusters is a process of antigen discrimination

    Are Nested Networks More Robust to Disturbance? A Test Using Epiphyte-Tree, Comensalistic Networks

    Get PDF
    Recent research on ecological networks suggests that mutualistic networks are more nested than antagonistic ones and, as a result, they are more robust against chains of extinctions caused by disturbances. We evaluate whether mutualistic networks are more nested than comensalistic and antagonistic networks, and whether highly nested, host-epiphyte comensalistic networks fit the prediction of high robustness against disturbance. A review of 59 networks including mutualistic, antagonistic and comensalistic relationships showed that comensalistic networks are significantly more nested than antagonistic and mutualistic networks, which did not differ between themselves. Epiphyte-host networks from old-growth forests differed from those from disturbed forest in several topological parameters based on both qualitative and quantitative matrices. Network robustness increased with network size, but the slope of this relationship varied with nestedness and connectance. Our results indicate that interaction networks show complex responses to disturbances, which influence their topology and indirectly affect their robustness against species extinctions

    Nephrin Is Expressed on the Surface of Insulin Vesicles and Facilitates Glucose-Stimulated Insulin Release

    Get PDF
    Nephrin, an immunoglobulin-like protein essential for the function of the glomerular podocyte and regulated in diabetic nephropathy, is also expressed in pancreatic beta-cells, where its function remains unknown. The aim of this study was to investigate whether diabetes modulates nephrin expression in human pancreatic islets and to explore the role of nephrin in beta-cell function. Nephrin expression in human pancreas and in MIN6 insulinoma cells was studied by Western blot, PCR, confocal microscopy, subcellular fractionation, and immunogold labeling. Islets from diabetic (n = 5) and nondiabetic (n = 7) patients were compared. Stable transfection and siRNA knockdown in MIN-6 cells/human islets were used to study nephrin function in vitro and in vivo after transplantation in diabetic immunodeficient mice. Live imaging of green fluorescent protein (GFP)-nephrin-transfected cells was used to study nephrin endocytosis. Nephrin was found at the plasma membrane and on insulin vesicles. Nephrin expression was decreased in islets from diabetic patients when compared with nondiabetic control subjects. Nephrin transfection in MIN-6 cells/pseudoislets resulted in higher glucose-stimulated insulin release in vitro and in vivo after transplantation into immunodeficient diabetic mice. Nephrin gene silencing abolished stimulated insulin release. Confocal imaging of GFP-nephrin-transfected cells revealed nephrin endocytosis upon glucose stimulation. Actin stabilization prevented nephrin trafficking as well as nephrin-positive effect on insulin release. Our data suggest that nephrin is an active component of insulin vesicle machinery that may affect vesicle-actin interaction and mobilization to the plasma membrane. Development of drugs targeting nephrin may represent a novel approach to treat diabetes

    Portal Vein Embolization is Associated with Reduced Liver Failure and Mortality in High-Risk Resections for Perihilar Cholangiocarcinoma

    Get PDF
    Background Preoperative portal vein embolization (PVE) is frequently used to improve future liver remnant volume (FLRV) and to reduce the risk of liver failure after major liver resection. Objective This paper aimed to assess postoperative outcomes after PVE and resection for suspected perihilar cholangiocarcinoma (PHC) in an international, multicentric cohort. Methods Patients undergoing resection for suspected PHC across 20 centers worldwide, from the year 2000, were included. Liver failure, biliary leakage, and hemorrhage were classified according to the respective International Study Group of Liver Surgery criteria. Using propensity scoring, two equal cohorts were generated using matching parameters, i.e. age, sex, American Society of Anesthesiologists classification, jaundice, type of biliary drainage, baseline FLRV, resection type, and portal vein resection. Results A total of 1667 patients were treated for suspected PHC during the study period. In 298 patients who underwent preoperative PVE, the overall incidence of liver failure and 90-day mortality was 27% and 18%, respectively, as opposed to 14% and 12%, respectively, in patients without PVE (p < 0.001 and p = 0.005). After propensity score matching, 98 patients were enrolled in each cohort, resulting in similar baseline and operative characteristics. Liver failure was lower in the PVE group (8% vs. 36%, p < 0.001), as was biliary leakage (10% vs. 35%, p < 0.01), intra-abdominal abscesses (19% vs. 34%, p = 0.01), and 90-day mortality (7% vs. 18%, p = 0.03). Conclusion PVE before major liver resection for PHC is associated with a lower incidence of liver failure, biliary leakage, abscess formation, and mortality. These results demonstrate the importance of PVE as an integral component in the surgical treatment of PHC

    Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads

    Get PDF
    The interlocking leaves of tank-forming bromeliads (Bromeliaceae) collect rainwater and detritus, thus creating a freshwater habitat for specialized organisms. Their abundance and the possibility of quantifying communities with accuracy give us unparalleled insight into how changes in local to regional environments influence community diversity in small water bodies. We sampled 365 bromeliads (365 invertebrate communities) along a southeastern to northwestern range in French Guiana. Geographic locality determined the species pool for bromeliad invertebrates, and local environments determined the abundance patterns through the selection of traits that are best adapted to the bromeliad habitats. Patterns in community structure mostly emerged from patterns of predator species occurrence and abundance across local-regional environments, while the set of detritivores remained constant. Water volume had a strong positive correlation with invertebrate diversity, making it a biologically relevant measure of the pools' carrying capacity. The significant effects of incoming detritus and incident light show that changes in local environments (e.g., the conversion of forest to cropping systems) strongly influence freshwater communities. Because changes in local environments do not affect detritivores and predators equally, one may expect functional shifts as sets of invertebrates with particular traits are replaced or complemented by other sets with different traits
    corecore