5,215 research outputs found
Increased temperature in urban ground as source of sustainable energy
This paper is part of the Proceedings of the 10th International Conference on Urban Regeneration and Sustainability (Sustainable City 2015). http://www.witconferences.comDensely urbanized areas are characterized by special microclimatic conditions with typically elevated temperatures in comparison with the rural surrounding. This phenomenon is known as the urban heat island (UHI) effect, but not restricted exclusively to the atmosphere. We also find significant warming of the urban subsurface and shallow groundwater bodies. Here, main sources of heat are elevated ground surface temperatures, direct thermal exploitation of aquifers and heat losses from buildings and other infrastructure. By measuring the shallow groundwater temperature in several European cities, we identify that heat sources and associated transport processes interact at multiple spatial and temporal scales. The intensity of a subsurface UHI can reach the values of above 4 K in city centres with hotspots featuring temperatures up to +20°C. In comparison with atmospheric UHIs, subsurface UHIs represent long-term accumulations of heat in a relatively sluggish environment. This potentially impairs urban groundwater quality and permanently influences subsurface ecosystems. From another point of view, however, these thermal anomalies can also be seen as hidden large-scale batteries that constitute a source of shallow geothermal energy. Based on our measurements, data surveys and estimated physical ground properties, it is possible to estimate the theoretical geothermal potential of the urban groundwater bodies beneath the studied cities. For instance, by decreasing the elevated temperature of the shallow aquifer in Cologne, Germany, by only 2 K, the obtained energy could supply the space-heating demand of the entire city for at least 2.5 years. In the city of Karlsruhe, it is estimated that about 30% of annual heating demand could be sustainably supplied by tapping the anthropogenic heat loss in the urban aquifer. These results reveal the attractive potential of heated urban ground as energy reservoir and storage, which is in place at many places worldwide but so far not integrated in any city energy plans.This work was supported by the Swiss National Science Foundation (SNSF) under grant number 200021L 144288, and the German Research Foundation (DFG), under grant number BL 1015/4-1
Theoretical models of planetary system formation. II. Post-formation evolution
We extend the results of planetary formation synthesis by computing the
long-term evolution of synthetic systems from the clearing of the gas disk into
the dynamical evolution phase. We use the symplectic integrator SyMBA to
numerically integrate the orbits of planets for 100 Ma, using populations from
previous studies as initial conditions.We show that within the populations
studied, mass and semi-major axis distributions experience only minor changes
from post-formation evolution. We also show that, depending upon their initial
distribution, planetary eccentricities can statistically increase or decrease
as a result of gravitational interactions. We find that planetary masses and
orbital spacings provided by planet formation models do not result in
eccentricity distributions comparable to observed exoplanet eccentricities,
requiring other phenomena such as e.g. stellar fly-bys to account for observed
eccentricities
Device and method for frictionally testing materials for ignitability
Test apparatus for determining ignition characteristics of various metal in oxidizer environments simulating operating conditions for materials is invented. The test apparatus has a chamber through which the oxidizing agent flows, and means for mounting a stationary test sample therein, a powered, rotating shaft in the chamber rigidly mounts a second test sample. The shaft is axially movable to bring the samples into frictional engagement and heated to the ignition point. Instrumentation connected to the apparatus provides for observation of temperatures, pressures, loads on and speeds of the rotating shaft, and torques whereby components of stressed oxygen systems can be selected which will avoid accidental fires under working conditions
Planet Population Synthesis
With the increasing number of exoplanets discovered, statistical properties
of the population as a whole become unique constraints on planet formation
models provided a link between the description of the detailed processes
playing a role in this formation and the observed population can be
established. Planet population synthesis provides such a link. The approach
allows to study how different physical models of individual processes (e.g.,
proto-planetary disc structure and evolution, planetesimal formation, gas
accretion, migration, etc.) affect the overall properties of the population of
emerging planets. By necessity, planet population synthesis relies on
simplified descriptions of complex processes. These descriptions can be
obtained from more detailed specialised simulations of these processes. The
objective of this chapter is twofold: 1) provide an overview of the physics
entering in the two main approaches to planet population synthesis and 2)
present some of the results achieved as well as illustrate how it can be used
to extract constraints on the models and to help interpret observations.Comment: 23 pages, 8 figures, accepted for publication as a chapter in
Protostars and Planets VI, University of Arizona Press (2014), eds. H.
Beuther, R. Klessen, C. Dullemond, Th. Henning. Updated references relative
to v
Theoretical models of planetary system formation: mass vs semi-major axis
Planet formation models have been developed during the last years in order to
try to reproduce the observations of both the solar system, and the extrasolar
planets. Some of these models have partially succeeded, focussing however on
massive planets, and for the sake of simplicity excluding planets belonging to
planetary systems. However, more and more planets are now found in planetary
systems. This tendency, which is a result of both radial velocity, transit and
direct imaging surveys, seems to be even more pronounced for low mass planets.
These new observations require the improvement of planet formation models,
including new physics, and considering the formation of systems. In a recent
series of papers, we have presented some improvements in the physics of our
models, focussing in particular on the internal structure of forming planets,
and on the computation of the excitation state of planetesimals, and their
resulting accretion rate. In this paper, we focus on the concurrent effect of
the formation of more than one planet in the same protoplanetary disc, and show
the effect, in terms of global architecture and composition of this
multiplicity. We use a N-body calculation including collision detection to
compute the orbital evolution of a planetary system. Moreover, we describe the
effect of competition for accretion of gas and solids, as well as the effect of
gravitational interactions between planets. We show that the masses and
semi-major axis of planets are modified by both the effect of competition and
gravitational interactions. We also present the effect of the assumed number of
forming planets in the same system (a free parameter of the model), as well as
the effect of the inclination and eccentricity damping.Comment: accepted in Astronomy and Astrophysic
Energy Distribution of Micro-events in the Quiet Solar Corona
Recent imaging observations of EUV line emissions have shown evidence for
frequent flare-like events in a majority of the pixels in quiet regions of the
solar corona. The changes in coronal emission measure indicate impulsive
heating of new material to coronal temperatures. These heating or evaporation
events are candidate signatures of "nanoflares" or "microflares" proposed to
interpret the high temperature and the very existence of the corona. The energy
distribution of these micro-events reported in the literature differ widely,
and so do the estimates of their total energy input into the corona. Here we
analyze the assumptions of the different methods, compare them by using the
same data set and discuss their results.
We also estimate the different forms of energy input and output, keeping in
mind that the observed brightenings are most likely secondary phenomena. A
rough estimate of the energy input observed by EIT on the SoHO satellite is of
the order of 10% of the total radiative output in the same region. It is
considerably smaller for the two reported TRACE observations. The discrepancy
can be explained partially by different thresholds for flare detection. There
is agreement on the slope and the absolute value of the distribution if the
same method were used and a numerical error corrected. The extrapolation of the
power law to unobserved energies that are many orders of magnitude smaller
remains questionable. Nevertheless, these micro-events and unresolved smaller
events are currently the best source of information on the heating process of
the corona
- …