214 research outputs found

    Unitarity constraints on neutral pion electroproduction

    Get PDF
    At large virtuality Q2Q^2, the coupling to the vector meson production channels provides us with a natural explanation of the surprisingly large cross section of the neutral pion electroproduction recently measured at Jefferson Laboratory, without destroying the good agreement between the Regge pole model and the data at the real photon point. Elastic rescattering of the π0\pi^0 provides us with a way to explain why the node, that appears at t0.5t\sim -0.5 GeV2^2 at the real photon point, disappears as soon as Q2Q^2 differs from zero.Comment: 7 pages; 12 figures Figures 1, 2, 10, 11, 12 updated. Axial-tensor coupling, instead of axial-vector coupling, at the b1NN verte

    Glassy Vortex State in a Two-Dimensional Disordered XY-Model

    Full text link
    The two-dimensional XY-model with random phase-shifts on bonds is studied. The analysis is based on a renormalization group for the replicated system. The model is shown to have an ordered phase with quasi long-range order. This ordered phase consists of a glass-like region at lower temperatures and of a non-glassy region at higher temperatures. The transition from the disordered phase into the ordered phase is not reentrant and is of a new universality class at zero temperature. In contrast to previous approaches the disorder strength is found to be renormalized to larger values. Several correlation functions are calculated for the ordered phase. They allow to identify not only the transition into the glassy phase but also an additional crossover line, where the disconnected vortex correlation changes its behavior on large scales non-analytically. The renormalization group approach yields the glassy features without a breaking of replica symmetry.Comment: latex 12 pages with 3 figures, using epsf.sty and multicol.st

    Transverse phase-locking in fully frustrated Josephson junction arrays: a new type of fractional giant steps

    Full text link
    We study, analytically and numerically, phase locking of driven vortex lattices in fully-frustrated Josephson junction arrays at zero temperature. We consider the case when an ac current is applied {\it perpendicular} to a dc current. We observe phase locking, steps in the current-voltage characteristics, with a dependence on external ac-drive amplitude and frequency qualitatively different from the Shapiro steps, observed when the ac and dc currents are applied in parallel. Further, the critical current increases with increasing transverse ac-drive amplitude, while it decreases for longitudinal ac-drive. The critical current and the phase-locked current step width, increase quadratically with (small) amplitudes of the ac-drive. For larger amplitudes of the transverse ac-signal, we find windows where the critical current is hysteretic, and windows where phase locking is suppressed due to dynamical instabilities. We characterize the dynamical states around the phase-locking interference condition in the IVIV curve with voltage noise, Lyapunov exponents and Poincar\'e sections. We find that zero temperature phase-locking behavior in large fully frustrated arrays is well described by an effective four plaquette model.Comment: 12 pages, 11 figure

    Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals

    Get PDF
    We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome' lattices. Our approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of different lengths. A very large number, e.g., up to 108110^{81} for the square lattice, exact lattice path integrals are obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition temperature as a continuous function of the field. In particular, we can analyze measurable effects on the superconducting transition temperature, Tc(B)T_c(B), as a function of the magnetic filed BB, originating from electron trajectories over loops of various lengths. In addition to systematically deriving previously observed features, and understanding the physical origin of the dips in Tc(B)T_c(B) as a result of multiple-loop quantum interference effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of square networks. Our approach allows us to analyze the complex structure present in the phase boundaries from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure

    Transverse Phase Locking for Vortex Motion in Square and Triangular Pinning Arrays

    Full text link
    We analyze transverse phase locking for vortex motion in a superconductor with a longitudinal DC drive and a transverse AC drive. For both square and triangular arrays we observe a variety of fractional phase locking steps in the velocity versus DC drive which correspond to stable vortex orbits. The locking steps are more pronounced for the triangular arrays which is due to the fact that the vortex motion has a periodic transverse velocity component even for zero transverse AC drive. All the steps increase monotonically in width with AC amplitude. We confirm that the width of some fractional steps in the square arrays scales as the square of the AC driving amplitude. In addition we demonstrate scaling in the velocity versus applied DC driving curves at depinning and on the main step, similar to that seen for phase locking in charge-density wave systems. The phase locking steps are most prominent for commensurate vortex fillings where the interstitial vortices form symmetrical ground states. For increasing temperature, the fractional steps are washed out very quickly, while the main step gains a linear component and disappears at melting. For triangular pinning arrays we again observe transverse phase locking, with the main and several of the fractional step widths scaling linearly with AC amplitude.Comment: 10 pages, 14 postscript figure

    Sarcopenia and Sarcopenic Obesity and Mortality Among Older People

    Get PDF
    Importance: Sarcopenia and obesity are 2 global concerns associated with adverse health outcomes in older people. Evidence on the population-based prevalence of the combination of sarcopenia with obesity (sarcopenic obesity [SO]) and its association with mortality are still limited. Objective: To investigate the prevalence of sarcopenia and SO and their association with all-cause mortality. Design, Setting, and Participants: This large-scale, population-based cohort study assessed participants from the Rotterdam Study from March 1, 2009, to June 1, 2014. Associations of sarcopenia and SO with all-cause mortality were studied using Kaplan-Meier curves, Cox proportional hazards regression, and accelerated failure time models fitted for sex, age, and body mass index (BMI). Data analysis was performed from January 1 to April 1, 2023. Exposures: The prevalence of sarcopenia and SO, measured based on handgrip strength and body composition (BC) (dual-energy x-ray absorptiometry) as recommended by current consensus criteria, with probable sarcopenia defined as having low handgrip strength and confirmed sarcopenia and SO defined as altered BC (high fat percentage and/or low appendicular skeletal muscle index) in addition to low handgrip strength. Main Outcome and Measure: The primary outcome was all-cause mortality, collected using linked mortality data from general practitioners and the central municipal records, until October 2022. Results: In the total population of 5888 participants (mean [SD] age, 69.5 [9.1] years; mean [SD] BMI, 27.5 [4.3]; 3343 [56.8%] female), 653 (11.1%; 95% CI, 10.3%-11.9%) had probable sarcopenia and 127 (2.2%; 95% CI, 1.8%-2.6%) had confirmed sarcopenia. Sarcopenic obesity with 1 altered component of BC was present in 295 participants (5.0%; 95% CI, 4.4%-5.6%) and with 2 altered components in 44 participants (0.8%; 95% CI, 0.6%-1.0%). An increased risk of all-cause mortality was observed in participants with probable sarcopenia (hazard ratio [HR], 1.29; 95% CI, 1.14-1.47) and confirmed sarcopenia (HR, 1.93; 95% CI, 1.53-2.43). Participants with SO plus 1 altered component of BC (HR, 1.94; 95% CI, 1.60-2.33]) or 2 altered components of BC (HR, 2.84; 95% CI, 1.97-4.11) had a higher risk of mortality than those without SO. Similar results for SO were obtained for participants with a BMI of 27 or greater. Conclusions and Relevance: In this study, sarcopenia and SO were found to be prevalent phenotypes in older people and were associated with all-cause mortality. Additional alterations of BC amplified this risk independently of age, sex, and BMI. The use of low muscle strength as a first step of both diagnoses may allow for early identification of individuals at risk for premature mortality.</p

    Dynamic ordering and frustration of confined vortex rows studied by mode-locking experiments

    Get PDF
    The flow properties of confined vortex matter driven through disordered mesoscopic channels are investigated by mode locking (ML) experiments. The observed ML effects allow to trace the evolution of both the structure and the number of confined rows and their match to the channel width as function of magnetic field. From a detailed analysis of the ML behavior for the case of 3-rows we obtain ({\it i}) the pinning frequency fpf_p, ({\it ii}) the onset frequency fcf_c for ML (\propto ordering velocity) and ({\it iii}) the fraction LML/LL_{ML}/L of coherently moving 3-row regions in the channel. The field dependence of these quantities shows that, at matching, where LMLL_{ML} is maximum, the pinning strength is small and the ordering velocity is low, while at mismatch, where LMLL_{ML} is small, both the pinning force and the ordering velocity are enhanced. Further, we find that fcfp2f_c \propto f_p^2, consistent with the dynamic ordering theory of Koshelev and Vinokur. The microscopic nature of the flow and the ordering phenomena will also be discussed.Comment: 10 pages, 7 figure, submitted to PRB. Discussion has been improved and a figure has been adde

    The Structure and Dynamics of the Upper Chromosphere and Lower Transition Region as Revealed by the Subarcsecond VAULT Observations

    Get PDF
    The Very high Angular resolution ULtraviolet Telescope (VAULT) is a sounding rocket payload built to study the crucial interface between the solar chromosphere and the corona by observing the strongest line in the solar spectrum, the Ly-a line at 1216 {\AA}. In two flights, VAULT succeeded in obtaining the first ever sub-arcsecond (0.5") images of this region with high sensitivity and cadence. Detailed analyses of those observations have contributed significantly to new ideas about the nature of the transition region. Here, we present a broad overview of the Ly-a atmosphere as revealed by the VAULT observations, and bring together past results and new analyses from the second VAULT flight to create a synthesis of our current knowledge of the high-resolution Ly-a Sun. We hope that this work will serve as a good reference for the design of upcoming Ly-a telescopes and observing plans.Comment: 28 pages, 11 figure

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57
    corecore