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Dynamic ordering and frustration of confined vortex rows studied by mode-locking experiments
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The flow properties of confined vortex matter driven through disordered mesoscopic channels are investi-
gated by mode locking~ML ! experiments. The observed ML effects allow us to trace the evolution of both the
structure and the number of confined rows and their match to the channel width as function of magnetic field.
From a detailed analysis of the ML behavior for the case of three rows we obtain~i! the pinning frequencyf p ,
~ii ! the onset frequencyf c for ML ( } ordering velocity!, and ~iii ! the fractionLML /L of coherently moving
three-row regions in the channel. The field dependence of these quantities shows that, at matching, whereLML

is maximum, the pinning strength is small and the ordering velocity is low, while at mismatch, whereLML is
small, both the pinning force and the ordering velocity are enhanced. Further, we find thatf c} f p

2 , consistent
with the dynamic ordering theory of Koshelev and Vinokur. The microscopic nature of the flow and the
ordering phenomena will also be discussed.

DOI: 10.1103/PhysRevB.69.064504 PACS number~s!: 74.25.Qt, 83.50.Ha, 74.78.Na
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I. INTRODUCTION

Vortex arrays~VA’s ! in type-II superconductors are exem
plary systems to study nonequilibrium states of driven p
odic media in various pinning environments. A particula
interesting phenomenon in this context is that of a dyna
transition from an elastic, coherent flow state at large velo
ties to a plastic, incoherent flow state at small velocities. T
first theoretical description of this issue was provided
Koshelev and Vinokur~KV ! ~Ref. 1! and refined in subse
quent studies2–5 which predicted various novel flow state
including a moving glass characterized by elastically coup
chains oriented along the flow direction and a moving tra
verse smectic with decoupled flow chains. Such structu
and the dynamic transitions between them have been ex
sively studied in a number of numerical simulations.5–7

Experimentally, a diversity of flow states has been
ported in direct imaging experiments on NbSe2 crystals.8–10

However, quantitatively the effect of pinning strength and
temperature on the ordering velocity has been studied o
through dc transport experiments,11–13 based on the assump
tion that an inflection point in dc current-voltage~IV! curve
~i.e., a peak in differential resistance! marks the dynamic
transition. Recently, different explanations have been gi
as the reason for such inflection point, like macroscopic
existence of two phases14 and a change in the self-organize
large scale morphology of vortex rivers.15 Thus, a more di-
rect, microscopic probe is required to study systematic
the velocity, magnetic field, and temperature dependenc
dynamic ordering.

Recently, we reported on the use of mode-locking~ML !
experiments as a direct probe of ordering.16 The ML phe-
nomenon occurs due to coupling between, on the one h
collective lattice modes of frequencyf int5qvdc/a, with q an
integer anda the lattice periodicity, which occur when a VA
moves coherently with velocityvdc through a pinning
potential,10,17and, on the other hand, a superimposed rf-dr
of frequencyf at an integer fraction 1/p of f int . This coupling
produces steps in the dc-transport~IV! curves whenvdc
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5(p/q) f a,7,18–21similar to ML steps in sliding charge den
sity waves~CDW’s! ~Refs. 22,23! and giant Shapiro steps i
Josephson junction arrays.24 However, on decreasing the ve
locity vdc or increasing the temperature, incoherent fluctu
tions and plastic ‘‘events’’ due to quenched and thermal d
order reduce the width of the ML steps compared to tha
an elastically moving system. Approaching the regime
fully plastic or liquid flow, the ML amplitude eventually
vanishes7,16 and the ML frequencyf c at which this occurs
provides adirect measure of the ordering velocityvc5 f ca.

The particular system of our studies consists of mes
copic flow channels in a disordered, strong pinni
environment.21,25The geometry of the samples is sketched
Figs. 1~a!, 1~b!. Vortices inside the channels are confined
strongly pinned vortices in the channel edges~CE’s!. When a
force is applied along the channel, the shear interaction w
these CE vortices provides the dominant pinning mechan
impeding the channel flow. Further, since the natural latt
~row! spacing isa0.1.075AF0 /B (b05A3a0/2), on vary-
ing the magnetic fieldB one can go through a series of stru
tural transitions fromn to n61 vortex rows in the channe
~typically n&10). In addition to its relevance for the stud
of ~dynamic! structural transitions of vortex matter i
quenched disorder, the physics of this system is also clo
related to layering transitions in confined fluids, flow of co
loids in mesopores and mesoscopic friction.

In Ref. 21 we have given a short account of the interest
phenomena which this system displays. First, due to
structural transitions, the dc-critical current for channel flo
~yield strength! oscillates with field as shown in Fig. 1~e!. At
a given field, the dcIV ~force-velocity! curvewith superim-
posed rf current exhibits the ML effect, as shown in F
1~c!. The ML condition in this case attains a form which
particularly useful to study the structural transitions. T
voltageV1,1 at which the fundamental (p5q51) ML step
occurs is given by21

V1,15 f F0nNch ~1.1!
©2004 The American Physical Society04-1
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with F0 the flux quantum,Nch the number of channels mea
sured simultaneously, andn thenumber of coherently movin
chainsin each channel.

As observed in Fig. 1~d!, on changing field,V1,1 increases
as a staircase, directly reflecting the evolution ofn with field.
A comparison with Fig. 1~e! shows that at mismatch fields
i.e., where a transitionn→n61 occurs andn andn61 steps
may coexist, the yield strength}I c is maximum, whereas
around the center of theV1,1 plateau, where ann row con-
figuration matches the channel width, it is minimum. A
shown in Ref. 21, this phenomenon is caused by positio
disorder~roughness! of the vortex configuration in the CE’s
first of all, on moving away from the matching field th
disorder enhances transverse fluctuations of vortex chain
the array, impeding the flow. Secondly, close to mismat
part of the ~moving! n-chain regions within each chann
may switch ton61. In between then and n61 regions
quasistatic fault zones with misaligned dislocations deve
where the vortex trajectories are jammed. We note that
presence of degrees of freedom transverse to the ave

FIG. 1. ~a! The channel device~side view! consisting of strong
pinning NbN ~dark! and weak pinning amorphous NbGe. The cu
rent and field directions are indicated.~b! Sketch of the vortex
structure around a channel~top view!. The effective channel width
w is also indicated.~c! Typical ML step in a dc-IV curve at 70 mT
and a superimposed rf current of 3 MHz.~d! Normalized ML volt-
ageV1,1/( f F0) versus magnetic field.~e! Critical currentI c , deter-
mined from a 1mV criterion, versus field.
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flow velocity, both in our system and vortex lattices in ge
eral, forms an important difference with CDW’s. Particular
for CDW’s the ‘‘displacement’’~phase! field is a scalarf(x)
and the velocity}] tf(x) represents longitudinal motion
only. Our system, when compared to regular vortex lattic
has the unique property that the transverse response ca
tuned.

In this paper we study in detail the ML step width as
function of the rf amplitude and frequency in detail. Th
experiments provide important information on the dynam
coherence of the arrays and how this coherency varies
mismatch and flow velocity. We focus on ML in the regim
wheren52→3→4, but our findings are representative f
other transitions with limitedn&10. The paper is organize
as follows. In Sec. II we first review previous theoretic
results on ML at high frequency and then present simulat
results of a one-dimensional~1D! vortex chain to show the
full frequency dependence of ML in a system with only ela
tic deformations. In Sec. III we describe the details of o
sample and the experimental procedure. The experime
results are presented in Sec. IV. We find clear evidence fo
ordering frequencyf c below which no ML occurs. Further
more, from the ML data we extract the pinning frequencyf p
and the total lengthLML of coherently moving three row
regions. These quantities systematically change with m
netic field: at matching, whereLML is large, f p and f c are
both small, while at mismatch whereLML is small, bothf p

and f c are enhanced. We find thatf c} f p
2 , independent of

magnetic field. In Sec. V we compare these results with
ordering theory of Koshelev and Vinokur, and discuss
implications for the microscopic nature of the flow and t
ordering phenomena.

II. THEORETICAL CONSIDERATIONS

The velocity ~or frequency! dependence of the ML ste
width is particularly useful as a direct probe of dynamic o
dering. At present, the ML step width has been studied th
retically only in the high frequency limit, where perturbatio
theory allows us to obtain an analytical description.26–30

A. Equation of motion

The 2D displacement fielduW (r ,t) of an elastic vortex lat-
tice driven through a pinning environment by combined
and dc external forces is~at T50)

g
]uW

]t
5FD1FR1FP ~2.1!

with g5F0B/r f the friction coefficient withr f the flux flow
resistivity.FD is a driving force per unit length consisting o
dc and rf terms;uFDu5 j dcF01 j rfF0cos(2pft) with j dc and
j rf the dc and rf current densities, respectively.FR is the
elastic restoring force given by (F0 /B)@(c112c66)¹(¹•uW )
1c66¹

2uW # with c11 and c66 the compression and shea
moduli, respectively.1,5 In absence of the pinning forceFP ,
the lattice is undistorted and flows uniformly:du/dt
4-2
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5FD /g5vdc1vaccos(2pft) with an ac velocity vac
5 j rfF0 /g, i.e., proportional to the rf drive.

B. Amplitude of the ML-interference step

At high velocities where the friction term dominates t
pinning term in Eq.~2.1!, one can treat the pinning as
perturbation with respect to the undisturbed rf-dc veloc
uFDu/g. We distinguish two cases, namely, a periodic pinn
potential and a random pinning potential. In case of a p
odic potential with periodicities equal to that of the lattic
elastic deformations are absent (FR50) and the whole lattice
behaves as a single particle with overdamped dynamics
sinusoidal potential. At large drive this case is describ
analogous to a voltage biased, resistively shunted Josep
junction:31 substitutingu5vt in Eq. ~2.1! and assumingFP
5m sin(ku) with m the maximum slope of the potential an
k52p/a, one can show that as first order correction a s
anomaly appears in the dc velocity-force characteristics
the ML conditionvdc5pa f. The current density width of the
pth step oscillates with the rf drive according to

D j p,152 j cuJp~vac/ f a!u ~2.2!

with j c5m/F0 the critical current density andJp the Bessel
function of the first kind of orderp. Note that no subhar
monic ML (q>2) occurs in this model.

Turning to a VL in a purely random potential, the fir
order perturbation correction has zero mean. The second
der correction is the lowest order of perturbation that p
vides the ML step. Taking into account the lattice distortio
due to the random pinning within the elastic limit, Schm
and Hauger26 showed that the ML step can appear at bo
harmonic and subharmonic ML conditionsvdc5(p/q)a f and
that the associated width of the current density step is

D j p,q52 j̃ c~qk!Jp
2~qvac/ f a!, ~2.3!

j c5(
q

j̃ c~qk!, ~2.4!

where j̃ c(qk) is the component of the critical current dens
related to the Fourier transform of the random potential c
relator at wave vectorqk. Thus, for random pinning the ML
step width exhibits a squared Bessel-function oscillation w
the rf drive. The same conclusion was obtained in a per
bation theory of CDW’s in presence of rf and dc drive.29 In
the following we omit the subscriptsp andq in the ML step
width since we will discuss only the fundamental ML ph
nomenon forp5q51 ~whereq51 will be justified in Sec.
IV !. We note here that in our casea can be a frustrated lattic
spacing different from the natural one in Ref. 26.

C. Frequency dependence

It is clear in Eqs.~2.2! and ~2.3! that the dependence o
frequency and rf drive only appear in the argumentz
5vac/ f a of the Bessel functions, irrespective of the type
pinning. Choosingz by varying the rf amplitude such tha
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J1(z) is maximum, the characteristic maximum value of t
fundamental ML width at high frequency is

D j max,P51.16j c , ~2.5!

D j max,R50.67j̃ c~k! ~2.6!

for periodic and random pinning, respectively.
These perturbational results are only applicable for f

quencies~much! above the so-called pinning frequencyf p .
For a sinusoidal pinning potential,f p is analogous to the
characteristic frequency of an overdamped Josephson j
tion and it is given by

f p[ j cF0 /ga. ~2.7!

For random pinning, the fundamental ML step involves on
the k52p/a Fourier component of the pinning forc
F̃p(k)5 j̃ c(k)F0 since it is responsible for the dynamic la
tice mode excited at the washboard frequency (f int
5vdc/a). In this case one can define the pinning frequen
f p ~Ref. 32! such that the strength of the friction termga f in
Eq. ~2.1! equalsF̃p(k):

f p[ j̃ c~k!F0 /ga. ~2.8!

Below f p no analytical result forD j max is available, not
even for sinusoidal pinning.33 In this regime numerical simu
lations are a useful tool to obtain the theoretical value of
fundamental ML width.34,35To obtainD j max vs f for the case
of completely elastic motion in our channel system, we ha
performed molecular dynamics simulations of an rf-
driven 1D elastic vortex chain both in a channel with per
odically configured static vortices in the CE’s and in cha
nels with strongly disordered CE vortex arrangements@see
the inset of Fig. 2~c! and Refs. 36,37 for more details#. The
channel width isw5b0, i.e., the~average! spacing between
the first pinned rows is 2b0. Vortex interactions were mod
elled by the London potential withl/a051 (l is the pen-
etration depth! and the average vortex spacinga in the chan-
nel was chosen equal to that in the CE’s,a5a0.

For the periodic case, the CE potential is sinusoidal a
the critical current densityj c is given by its maximum slope
j c5m/F0. Simulating a chain of limited length was suffi
cient since all vortices behave as a single particle. Figur
shows an example of the ML step for superimposed rf dr
of amplitude vac/( f a)52 and frequencyf .3 f p . In Fig.
2~c!, we summarize the numerical results ofD j max,P versus
frequency, represented by the solid squares. Here,D j max,P is
normalized byj c and the frequency is normalized byf p de-
fined by Eq.~2.7!. At high frequencyf . f p , D j max,P satu-
rates at a frequency independent valueD j s,P / j c.1.13 very
close to the theoretical prediction Eq.~2.5! for periodic pin-
ning. For smallerf, D j max,P starts to decrease aroundf p and
then vanishes linearly withf. The whole frequency depen
dence ofD j max,P is well approximated by an empirical func
tion

D j max5D j stanh~ f /0.7f p!, ~2.9!
4-3
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in which we have omitted the subscript referring to the pe
odic pinning potential. Equation~2.9! is represented by the
solid line in Fig. 2~c!.

For the disordered1D channel, the CE vortices are a
signed relatively large random shifts over distancesudu with
A^(¹•d)2&50.12 with respect to the regular lattic
configuration.37,38 We used a chain of 2000 vortices fo
which the results have become length independent. Du
the disorder, both the numerically obtained threshold fo
} j c

R and the step widthD j max,R are strongly reduced@by a
factor ;5 ~Ref. 37!# with respect to the ordered case. A
example of the simulated ML step is shown in Fig. 2~b!.
There are two distinct differences with the periodic ca
displayed in Fig. 2~a!: ~i! the sharp corners disappear and~ii !
both below and above the ML condition the curve in~b! is
essentially linear with the same slope, with a shift at the M
condition, very similar to the experimental result in Fig. 1~c!.
After normalizationD j max,R/jc

R and f / f p5ga f /( j c
RF0), we

plot the simulation results collected for various frequenc
in Fig. 2~c! as the open squares. The saturation va
D j max,R(f@fp)[Djs,R.0.7j c

R , very close to the result in the
random pinning limit in Eq.~2.6!. The whole frequency de
pendence is then again well approximated by Eq.~2.9!
@dashed line in Fig. 2~c!# in which we have now implicitly
assumed the subscriptR referring to the quantities in the
random case.

It is worth mentioning that the results for the disorder
channel were insensitive to small changes in the ratioa/a0.

FIG. 2. ~a! Normalized force-velocity curves for simulations o
a vortex chain with an rf drive of frequencyf 53 f p and amplitude
vac/( f a)52 in a periodic 1D channel;~b! same as~a! in a disor-
dered 1D channel.~c! Maximum ML current density step width
from simulations with rf drive of various frequencies and amp
tudes: (j) results for a channel with periodic CE vortices; (h)
results for disordered 1D channels. The curves show the empi
relation Eq.~2.9! with C51.16 ~drawn line! andC50.69 ~dashed
line!. The inset shows the simulation geometry for a periodic
configuration (s) and for a disordered CE configuration (d).
06450
-

to
e

,

L

s
e

Further, we note that both in the periodic and the disorde
channel simulations ML can be observed down tof 50. We
believe this is a direct consequence of the fact that vortice
the chain remain elastically connected, because other s
lations in which also transverse degrees of freedom and p
ticity are allowed, do not show this feature.39

III. EXPERIMENT

The device consists of a strong pinning layer of polycry
talline NbN film on top of a weak pinning amorphous (a-!
Nb12xGex film (x'0.3). The thickness of the NbN an
a-NbGe films are 50 and 550 nm, respectively. Using re
tive ion etching with proper masking,40 narrow straight chan-
nels were etched from the top~NbN! layer leaving a 300 nm
(5dch) thick (a-NbGe! bottom layer, see Fig. 1~a!. The
width and length of each channel are 230 nm and 300mm
(5L), respectively. The spacing between adjacent chan
is 10 mm. Magnetic field was applied perpendicular to t
films, inducing a vortex array as schematically shown in F
1~b!. The transport current was applied perpendicularly
the channel, providing a driving force parallel to the chann

For the ML measurement, we recorded dc voltage
sweeping the dc current with superimposed rf current. T
transmission lines for the rf current were terminated
matching circuits very close to the sample. To avoid heati
both the sample and the circuits were immersed in superfl
4He. For consistency, all the data presented in this pa
were taken after field cooling in which the magnetic fie
was applied aboveTc’s of a-NbGe~2.68 K! and NbN~11 K!
and the sample subsequently cooled toT51.9 K, which is
much lower than the vortex lattice melting temperatu
'2.5 K for the fields we studied. The ML steps inIV curves
are always rounded as in Fig. 1~c!. For definition of the cur-
rent step widthDI , we took the derivative of theIV curve
and integrated over the ML peak in the differenti
conductance-voltage curve with respect to the flux-flow b
line.21

IV. RESULTS

Our measurements were carried out in the magnetic fi
regime where three-chain structures exist in the chann
ranging from 45 to 110 mT, see Fig. 1~d!. We thus focus on
the fundamental ML step characterized byV1,1/(F0f Nch)
53 originating fromcoherently moving n53 regions. At the
borders of our field range coexistence withn52 or n54 ML
steps may occur.

In Fig. 3 we show an example of how the fundamen
ML width DI depends on the rf driveI rf for m0H580 mT
and f 512 MHz. DI (I rf) shows oscillatory behavior with a
maximum valueDI max in the first lobe, as indicated in th
figure. A qualitative comparison of the data with the theor
ical predictions Eq.~2.3! ~solid line! and Eq.~2.2! ~dotted
line! shows that the data follows more closely aJ1

2 than a
uJ1u dependence. AtDI max it is found that I rf5(1.9
60.3)I dc over a broad frequency range betweenf p and 40
MHz ~above this frequency the experimental error inI rf be-
comes larger!. This value is in good agreement with Eq.~2.3!

al
4-4
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which has a maximum atz5vac/ f a5vac/vdc'I rf /I dc51.8.
It is important to note that while the values of the rf curre
might appear rather large, the actual vortex displacem
due to the rf drive at or below the first maximum inJ1

2(z),
are less than 1.8/(2p).0.3 of the lattice spacing.

The J1
2(z) behavior shows that the pinning potential d

to the vortices in the CE acts as a random potential~RP!.41

The origin of the RP is the strong positional disorder of t
vortex lattice in the NbN edge material. This disorder h
recently been observed in scanning tunnelling microsc
experiments on NbN films.42 We further note that we did no
observe subharmonic ML steps, i.e., there were no ML st
at VML53 f F0Nch/q with q>2. In the context of our RP
this seems in contradiction to the results of others.18 But
those experiments have been carried out at relatively
fields where the RP has short range correlations on a s
j!a. Fourier componentsqk with q>2 are needed to de
scribe such short range fluctuations and therefore sub
monic ML steps are seen. In our case, the RP is due to
CE vortices which have average spacinga0.a. Conse-
quently the most important Fourier component describ
this RP is theq51 mode, which explains why we do not se
subharmonic ML steps.

Next we turn to the frequency dependence ofDI max. Fig-
ure 4 showsDI max(f) at 50 mT obtained from measuremen
similar to those in Fig. 3 at various frequencies. As in t
numerical results in Fig. 2~c!, DI max saturates at a valu
DI s.78 mA at high frequencies, while at low frequencies
decreases monotonically withf. A large part of the data is
well approximated by the empirical function discussed in
previous section,DI max5DIstanh(f /0.7f p), and we can ex-
tract the pinning frequencyf p57.8 MHz as the remaining fi
parameter. However, at low frequency~i.e., small dc veloc-
ity! the data lie significantly below the empirical curve. Th
implies that the vortex motion becomes less coherent du
the disordered CE’s. On reducingf, DI max vanishes almos
linearly at afinite frequencyf c determined by the intersec
tion between the dotted line and theDI max50 axis. In this
regime, the rf current for whichDI exhibits its maximum
value, starts to saturate at a value;I c .43 The collapse of

FIG. 3. Current widthDI of the fundamental ML step vs r
currentI rf taken at 12 MHz and 80 mT. The maximum valueDI max

is indicated. Solid and dotted curves displayDI}J1
2(z) and DI

}uJ1(z)u, with z}I rf , respectively.
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DI max at finite frequencyf c is even more clearly visible in
the data taken at 110 mT shown in the inset to Fig. 4. Be
f c no ML step appears atany rf drive, indicating the com-
plete absence of coherent three-row motion.

The above fitting analysis was performed onDI max(f) data
taken at various fields in then53 field regime and we ex-
tractedf p , DI s and the dynamic ordering frequencyf c . We
first discuss the results off p andDI s as a function of mag-
netic field, shown in Fig. 5~b!. As observed,f p has a mini-
mum at 70 mT, somewhat below the middle of the plateau
V1,1 in Fig. 5~a!, and it increases on approaching either e
of the plateau. Hence, the associated pinning current den

in the coherent three-chain regionsj̃ c(k) is small at 70 mT

and increases away from 70 mT. In fact, the value ofj̃ c(k) as
determined fromf p using Eq.~2.8! agrees within 30% with
j c as determined directly from dc-IV curves, Fig. 1~e!. Mean-
while, DI s exhibits a field dependence which differs cons
erably from that of f p : it has a broad peak aroundB
550 mT and then decreases with increasing field. Clea
this behavior cannot be explained by simply assum
DI s(B)} j c(B)} f p(B).

At this point we note that theory assumes all vortices
the channel are moving coherently. However, in our exp
ment only a fraction of the vortices move coherently. Sp
cifically, an n-row region may locally break up due to th
strong edge disorder or it may coexist withn61-row regions
~with different ML voltages! due to mismatch.21 We define
the total length of mode-locked regions with three coheren
moving rows asLML and the mode-locked fraction a
LML /L. Since only the coherentn-row regions contribute to
DI s , we can link the value ofDI s to that of D j s by using
DI s5LMLdchD j s . In this expressionD j s can be obtained
from the measured pinning frequency via Eqs.~2.8! and
~2.6!. Usingg5F0B/r f the result forLML is given by

FIG. 4. The maximum current widthDI max as a function of
frequencyf at 50 mT. The solid curve shows the fit according to t
empirical function Eq.~2.9!. The dotted line shows the linear ex
trapolation toDI max50 for definition of the dynamic ordering fre
quencyf c . The inset shows the onset behavior ofDI max and order-
ing frequencyf c for a field of 110 mT. The solid curve shows a fi
of the high frequency data to Eq.~2.9!.
4-5
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LML5
DI s

f pa

r f

0.67Bdch
. ~4.1!

The different field dependencies ofDI s and f p mentioned
above should thus be attributed to an additional field dep
dence ofLML .

We now evaluateLML using r f for amorphous NbGe
films44–46 and first assume an equilibrium lattice spacinga
5a0(.1.075AF0 /B) with B5m0H. Figure 5~c! showsLML
normalized by the channel lengthL vs field ~square sym-
bols!. As observed, the coherently moving fraction is ma
mum atB.70 mT. This provides a clear definition of th
matching fieldBM for n53. At BM , the longitudinal spacing
a in the channel should obeya[aM5a0 and the row spac-
ing bM5F0 /BMaM is commensurate with the effectiv
channel width, i.e., 3bM5w. However, away from the
matching field the array will be frustrated~stretched or com-
pressed! due to the confinement. In particular, forB,BM the
lattice spacinga.a0, while for B.BM , a,a0. The maxi-
mum possible difference betweena and a0 would be

FIG. 5. ~a! V1,1/ f F0 versus field.~b! The pinning frequencyf p

(j), the dynamic ordering frequencyf c (d), and the saturation
value of the maximum current widthDI s (h) for n53 as a func-
tion of field. The data are obtained from fits to the measu
DI max(f). ~c! The coherently moving fractionLML /L of n53 re-
gions vs field, whereLML is determined from Eq.~4.1!, with a
5a0(B) (h) anda5aMBM /B (s), where the subscriptM refers
to the matching field, see text. All lines are guides to the eye.
06450
n-

-

achieved when the row spacingb would not change with
mismatch, i.e., b(B)5bM .47 This would imply a
5(BM /B)aM . Inserting this relation fora in Eq. ~4.1!, the
result forLML , shown by the open circles, is slightly mod
fied but shows essentially the same behavior as our
analysis: upon increasing the frustration, which we define
u12(B/BM)u, the spatial extent of regions with three cohe
ently moving rows shrinks progressively. An addition
analysis of then52 ML steps which occur at lower field
(B.50 mT, where the transitionn53→2 takes place!,
shows consistently that the spatial extent of the 2 row M
regions increases upon further decreasing field.

Finally we discuss the behavior of the ordering frequen
f c . As shown in Fig. 5~b!, f c(B), denoted by (d), exhibits
a minimum at the matching field and systematically
creases with mismatch. Similarly to the decay ofLML with
increasing frustration, this shows that a larger mismatch p
gressively induces more disorder. We also find that, when
field is reduced belowB.50 mT, where a two-row configu
ration first appears, the ordering frequencyf c

n52 for the
emergence of then52 ML effect decreases.

Qualitatively, the behavior off c is similar to that of the
pinning frequencyf p ~or I c). Both are important quantities
characterizing the random pinning of a system and are
independent, as follows from a double logarithmic plot off c
as a function off p , shown in Fig. 6. The data are we
described by the relationf c5t f p

2 with t.131028 s, repre-
sented by the dashed line. A more detailed fit of the d
using a power law relationf c} f p

a yields an exponenta
52.160.1.

V. ANALYSIS AND DISCUSSION OF DYNAMIC
ORDERING AND DEPINNING THRESHOLD BEHAVIOR

A. Comparison with the KV theory

For a proper discussion of the above results, we fi
shortly describe the phenomenological ordering theory
Koshelev and Vinokur~KV !.1 In their study of a 2D vortex
system with strong random bulk pinning, they found that t
shaking action due to motion through the pinning poten
can be represented by a ‘‘shaking temperature’’Tsh which

d

FIG. 6. Dynamic ordering frequencyf c versus pinning fre-
quencyf p . Dotted line: f c5t f p

2 with t.131028 s.
4-6
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decreases with velocity asTsh}1/v. The dynamic ordering
transition occurs when the effective temperatureT1Tsh is
reduced below the equilibrium melting temperatureTm , i.e.,
when the velocity exceedsvc}1/(Tm2T). In later work4,48 it
was shown that the shaking temperature refers to~bond!
fluctuations transverse to the velocity and that the associ
ordering atvc corresponds to so called transverse freezi
where interchain excursions~permeation modes! are strongly
suppressed. Within the KV theory we can express the or
ing frequencyf c5vc /a as

f c5A3/2p
gur f

F0
2a2dchkB~Tm2T!

, ~5.1!

with gu the mean squared 2D pinning energy multiplied
the area of a pin,r f the flux flow resistivity,a the lattice
spacing anddch the film thickness.

In our channel system the ordering can also be descr
as transverse freezing. We observed this in simulations~e.g.
for w/b0.3) as a suppression of the interchain excursion
parts of the channel at sufficient velocity.39 However, differ-
ent from the 2D system considered by KV, these interch
excursions and the associated shaking temperature now
from the random interaction with the disordered vortices
the CE’s and a modification of Eq.~5.1! is required. Think-
ing in terms of bond fluctuations or a Lindemann criterion,
in Ref. 4, it is clear that it is the short wavelength;a0
disorder component in the potential due to quenched vo
displacementsd in the CE which is relevant for the ‘‘shakin
temperature.’’ This component acts only in a range;a0/2
from the first pinned row,39 therefore shaking of the oute
rows should govern the transverse freezing. A rough estim
within London theory yields an r.m.s. amplitude of the ra
dom stress near the edge;«cec66 with c66 the shear modulus
and «ce.(A^udu2&/a0)/(pA3) representing the random
strain.16,39 Taking the longitudinal range of a pin also to b
a0/2, we replace the parametergu in Eq. ~5.1! by gce , re-
sulting in

gce.~«cec66a0b0dch!
2S a0

2 D 2

. ~5.2!

Further it is important to realize the following: the ener
scalekBTm in Eq. ~5.1! should be regarded as the energy
creation of the dislocation pairs that are required for pla
motion, i.e.,kBTm→kBTp.c66a0

2dch/(2p), with c66 evalu-
ated at the field and temperature of the measurement.49 For
our temperature and fields, this energykBTp is two orders of
magnitude larger than the thermal energykBT which we can
therefore neglect in Eq.~5.1!. Hence, the random shaking
(}1/v) in our case essentially represents ‘‘cold working’’
the moving structure. We also anticipate that the energykBTp
should depend on the matching condition since a reduc
of this energy eventually drives the transition ton52 or n
54 rows. Therefore we add a mismatch dependent fa
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Ap : kBTp5Apc66a0
2dch/(2p), whereAp is assumed to be 1

at matching. Taking into account these changes, Eq.~5.1!
becomes

f c.
Ap«ce

2 c66r f

2ApF0B
. ~5.3!

Using the experimental parameters with c66
5F0B/(16pm0l2) and l(1.9 K).1.1 mm, we obtain the
value of «ce from the value off c at matching:«ce.0.025,
i.e., A^udu2&/a0.0.13. This is in very reasonable agreeme
with our estimate (A^udu2&/a0.0.10) near the melting tem
perature in Ref. 16. From Eq.~5.3! and thef c data in Fig.
5~b! we can also extract the field dependence ofAp charac-
terizing the reduction of the defect creation energy. The
sult is plotted in Fig. 7, showing that close to mismatchAp
has decreased by an order of magnitude.

Next, we turn to the relation betweenf c and f p . The
dc-critical current density can be described phenomenol
cally by25

j c52Ac66/~Bw!, ~5.4!

where in our caseA varies fromA.0.015 at matching to
A.0.0420.05 at mismatch, see the open squares in Fig
Further, when we combine Eqs.~5.3!, ~5.4! with Eq. ~2.8!
and useg5F0B/r f , we obtain the quadratic relationf c

5vc /a5t f p
2 observed experimentally in Fig. 6 with the tim

scalet given by

t.0.5~«ce /A!2
~wB!2

Apc66r f
. ~5.5!

We note that the relationf c} f p
2 is in fact a general resul

from the KV theory in the strong pinning limit. Considerin
Eq. ~5.5!, sincer f ,c66}B and experimentally we found tha
t.1028 s, independent of field, this implies thatA
}A1/(tAp). Using this relation with the field dependen

FIG. 7. (d) The parameterAp as determined fromf c in Fig.
5~b! and Eq.~5.3! using«ce50.025. (h) The parameterA describ-
ing the pinning strength determined directly from Eq.~5.4! and the
measured critical current density. (s) A determined from Eq.~5.5!
using the field dependence ofAp andt51028 s.
4-7



n
e

s
ta

tl
th

of
in
o

er

in
a
te

he
C

ib
e

r

de
m
es
cts

-
ly
a

io
t o
th
en

p

.
in

o
th

re-
ent
o-

al

re-

ter-
ss,
r,
e
ng
26.

ing
e-

of

er-
dy-

ted
so-
tail

nd
n to
r-
ity
tent
-
me

eri-
of

-
or

N. KOKUBO, R. BESSELING, AND P. H. KES PHYSICAL REVIEW B69, 064504 ~2004!
value of Ap , we obtainA as shown by the open circles i
Fig. 7. The minima in both data are slightly shifted and d
viations are seen forB.BM , but given the approximation
made, the overall agreement is still reasonable. An impor
physical implication of the relationA}A1/(Ap) is that the
increase in pinning strength away from matching is direc
related to the reduction of the defect creation energy. In o
words, the rise inA reflects an effectivesofteningof the array
in the channel upon increasing mismatch. Through this s
ening it is able to better adjust to the random CE pinn
potential, very much analogous to the mechanism resp
sible for the peak effect in ordinary superconductors.50 In our
case a more detailed picture of the softening mechanism
possible. We already mentioned that forB.BM , the chains
are longitudinally compressed (a,a0). This will facilitate
deviations in the transverse direction and reduce the en
to ~dynamically! create interstitials between rows. ForB
,BM , the chains are stretched, i.e.,a.a0. In this case the
energy for a chain to accept vortices from a neighbor
chain is lowered. This in turn facilitates a configuration
change in which the array can better adopt to the CE po
tial. An additional mechanism for the rise inA for B,Bm is
that, due to the mismatch, the outer chains will be pus
towards the CE, leading to an enhanced influence of the
potential.

To conclude this section, we shortly discuss the poss
influence of ‘‘extrinsic’’ defects in our samples which may b
a source of incoherency and limitf c . Such ‘‘extrinsic’’ de-
fects could consist of a NbN bridge over the channel o
physical edge roughness on a scale>b0. First, when such
defects are important to the behavior, this would rapidly
stroy the critical current oscillations of the channels, the a
plitude of which quantitatively agreed with that of sampl
with channels of different width. Secondly, extrinsic defe
cannot explain the variation off c with magnetic field nor its
quadratic dependence onf p ~or j c). The quantitative agree
ment of our data with the modified KV theory decisive
shows that the microscopic roughness of the pinned CE
rays forms the dominant~intrinsic! disorder in our system.

B. dc versus dc¿rf driven state

So far we have tacitly assumed that the flow behav
obtained from our rf-dc measurements simply reflects tha
the dc-driven structure. We now discuss to what extent
additional rf current itself influences the behavior. Rec
measurements of the rf impedance,51 which is a sensitive
probe of ML at small rf currents, have shown that on a
proaching the dc-driven state, i.e., whenI rf→0, the voltage
broadeningdV1,1 of the fundamental ML step diverges
Since dV1,1}d f int , this broadening reflects fluctuations
the washboard frequency and, viaf 5v/a, fluctuations in the
velocity and in the longitudinal lattice spacinga.52 Corre-
spondingly, the divergence ofdV1,1 implies that the dc-
driven state lacks temporal coherence. We also did not
serve any narrow band noise in the voltage spectrum of
06450
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dc-driven state~even for only 30 channels at large dc drive!.
At the same time,V1,1}n remains constant forI rf→0, from
which we conclude that the dc state still exhibits local
gions organized in three moving chains. Thus, at suffici
velocity the dc state would correspond to temporally inc
herent, confined smectic regions3 of finite ~mismatch depen-
dent! length, with liquidlike intrachain order and residu
interchain excursions.

In presence of rf current the fluctuations are strongly
duced, as also observed in experiments on CDW’s.53 In
simulations we observed that the suppression of the in
chain excursions plays an important role in this proce
causingtransversely frozenregions in the channel. Howeve
the rf-dc IV curves always show incomplete ML with th
same broadeningdV1,1 as discussed above. This broadeni
is too large to be explained by the elastic theory in Ref.
Therefore, it is either caused by residual slip in then-row
regions or by remaining plastic regions with interconnect
rows, but further experimental and numerical work is r
quired to decide on this issue.

Finally, we shortly return to the frequency dependence
the ML current widthDI max in Fig. 4. Extending the relation
DI max(f)}Djmax(f)LML( f ) to frequencies belowf p and taking
the ideal tanh(f) behavior Eq.~2.9! for D j max, we find that
the ordering frequencyf c would mark the velocity where
LML→0. Such interpretation implies that the dynamic ord
ing in our disordered system is a smooth, second order
namic phase transition.

VI. SUMMARY

Using mode-locking experiments, we have investiga
the dynamics of vortex arrays confined in disordered me
scopic channels. The ML effect allows us to trace in de
structural transitions fromn21→n→n11 confined moving
vortex chains on changing field. A study of the amplitude a
frequency dependence of the ML steps and compariso
simulations of anelasticchain provide a complete characte
ization of the pinning strength, dynamic ordering veloc
and coherency of the arrays. We find that the spatial ex
LML of coherently movingn row regions is large at a match
ing field and shrinks with increasing mismatch. At the sa
time both the pinning frequencyf p} j c and the ordering fre-
quency f c ~proportional to the ordering velocity! increase
with mismatch. We show thatf c} f p

2 . Together with our pre-
vious observation of a divergence off c near the melting
temperature in Ref. 16, these results provide detailed exp
mental evidence for the phenomenological ordering theory
Koshelev and Vinokur.1
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