103 research outputs found

    Coherent transport of holes in microtap arrays

    Get PDF
    Realitzat en col·laboració amb el Dept. Física (UAB)Treball final de màster oficial fet en col·laboració amb Universitat Autònoma de Barcelona (UAB), Universitat de Barcelona (UB) i Institut de Ciències Fotòniques (ICFO

    Spectroscopic investigation of local mechanical impedance of living cells

    Full text link
    The mechanical properties of PC12 living cells have been studied at the nanoscale with a Force Feedback Microscope using two experimental approaches. Firstly, the local mechanical impedance of the cell membrane has been mapped simultaneously to the cell morphology at constant force. As the force of the interaction is gradually increased, we observed the appearance of the sub-membrane cytoskeleton. We shall compare the results obtained with this method with the measurement of other existing techniques. Secondly, a spectroscopic investigation has been performed varying the indentation of the tip in the cell membrane and consequently the force applied on it. In contrast with conventional dynamic atomic force microscopy techniques, here the small oscillation amplitude of the tip is not necessarily imposed at the cantilever first eigenmode. This allows the user to arbitrarily choose the excitation frequency in developing spectroscopic AFM techniques. The mechanical response of the PC12 cell membrane is found to be frequency dependent in the 1 kHz - 10 kHz range. The damping coefficient is reproducibly observed to decrease when the excitation frequency is increased.Comment: 8 pages, 8 figure

    Extracellular matrix components modulate different stages in β2-microglobulin amyloid formation.

    Get PDF
    Amyloid deposition of wild-type human β2-microglobulin (WT-hβ2m) in the joints of long-term hemodialysis patients is the hallmark of dialysis-related amyloidosis (DRA). In vitro, WT-hβ2m does not form amyloid fibrils at physiological pH and temperature unless co-solvents or other reagents are added. Therefore, understanding how fibril formation is initiated and maintained in the joint space is important for elucidating WT-hβ2m aggregation and DRA onset. Here, we investigated the roles of collagen I and the commonly administered anticoagulant, low-molecular-weight (LMW) heparin, in the initiation and subsequent aggregation phases of WT-hβ2m in physiologically relevant conditions. Using thioflavin T (ThT) fluorescence to study the kinetics of amyloid formation, we analyzed how these two agents affect specific stages of WT-hβ2m assembly. Our results revealed that LMW-heparin strongly promotes WT-hβ2m fibrillogenesis during all stages of aggregation. However, collagen I affected WT-hβ2m amyloid formation in contrasting ways: decreasing the lag time of fibril formation in the presence of LMW-heparin and slowing the rate at higher concentrations. We found that in self-seeded reactions, interaction of collagen I with WT-hβ2m amyloid fibrils attenuates surface-mediated growth of WT-hβ2m fibrils, demonstrating a key role of secondary nucleation in WT-hβ2m amyloid formation. Interestingly, collagen I fibrils did not suppress surface-mediated assembly of WT-hβ2m monomers when cross-seeded with fibrils formed from the N-terminally truncated variant ΔN6-hβ2m. Together, these results provide detailed insights into how collagen I and LMW-heparin impact different stages in the aggregation of WT-hβ2m into amyloid which lead to dramatic effects on the time course of assembly

    In situ identification and G4-PPI-His-Mal-dendrimer-induced reduction of early-stage amyloid aggregates in Alzheimer’s disease transgenic mice using synchrotron-based infrared imaging

    Get PDF
    Amyloid plaques composed of Aβ amyloid peptides and neurofibrillary tangles are a pathological hallmark of Alzheimer Disease. In situ identification of early-stage amyloid aggregates in Alzheimer's disease is relevant for their importance as potential targets for effective drugs. Synchrotron-based infrared imaging is here used to identify early-stage oligomeric/granular aggregated amyloid species in situ in the brain of APP/PS1 transgenic mice for the first time. Also, APP/PS1 mice show fibrillary aggregates at 6 and 12 months. A significant decreased burden of early-stage aggregates and fibrillary aggregates is obtained following treatment with poly(propylene imine) dendrimers with histidine-maltose shell (a neurodegenerative protector) in 6-month-old APP/PS1 mice, thus demonstrating their putative therapeutic properties of in AD models. Identification, localization, and characterization using infrared imaging of these non-fibrillary species in the cerebral cortex at early stages of AD progression in transgenic mice point to their relevance as putative pharmacological targets. No less important, early detection of these structures may be useful in the search for markers for non-invasive diagnostic techniques

    Arrhythmic Effects Evaluated on <i>Caenorhabditis elegans</i>: The Case of Polypyrrole Nanoparticles

    Full text link
    Experimental studies and clinical trials of nanoparticles for treating diseases are increasing continuously. However, the reach to the market does not correlate with these efforts due to the enormous cost, several years of development, and off-target effects like cardiotoxicity. Multicellular organisms such as the Caenorhabditis elegans (C. elegans) can bridge the gap between in vitro and vertebrate testing as they can provide extensive information on systemic toxicity and specific harmful effects through facile experimentation following 3R EU directives on animal use. Since the nematodes' pharynx shares similarities with the human heart, we assessed the general and pharyngeal effects of drugs and polypyrrole nanoparticles (Ppy NPs) using C. elegans. The evaluation of FDA-approved drugs, such as Propranolol and Racepinephrine reproduced the arrhythmic behavior reported in humans and supported the use of this small animal model. Consequently, Ppy NPs were evaluated due to their research interest in cardiac arrhythmia treatments. The NPs' biocompatibility was confirmed by assessing survival, growth and development, reproduction, and transgenerational toxicity in C. elegans. Interestingly, the NPs increased the pharyngeal pumping rate of C. elegans in two slow-pumping mutant strains, JD21 and DA464. Moreover, the NPs increased the pumping rate over time, which sustained up to a day post-excretion. By measuring pharyngeal calcium levels, we found that the impact of Ppy NPs on the pumping rate could be mediated through calcium signaling. Thus, evaluating arrhythmic effects in C. elegans offers a simple system to test drugs and nanoparticles, as elucidated through Ppy NPs

    Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection

    Get PDF
    Poly(propylene imine) dendrimers have been shown to be promising 3-dimensional polymers for the use in the pharmaceutical andbiomedical applications. Our aims of this study were first, to synthesize a novel type of dendrimer with poly(propylene imine) core andmaltose-histidine shell (G4HisMal) assessing if maltose-histidine shell can improve the biocompatibility and the ability to cross the blood-brain barrier, and second, to investigate the potential of G4HisMal to protect Alzheimer disease transgenic mice from memory impairment.Our data demonstrate that G4HisMal has significantly improved biocompatibility and ability to cross the blood-brain barrier in vivo.Therefore, we suggest that a maltose-histidine shell can be used to improve biocompatibility and ability to cross the blood-brain barrier ofdendrimers. Moreover, G4HisMal demonstrated properties for synapse and memory protection when administered to Alzheimer diseasetransgenic mice. Therefore, G4HisMal can be considered as a promising drug candidate to prevent Alzheimer disease via synapse protection

    From Mouse To Human : Comparative Analysis Between Grey And White Matter By Synchrotron-Fourier Transformed Infrared Microspectroscopy

    Get PDF
    Fourier Transform Infrared microspectroscopy (μFTIR) is a very useful method to analyze the biochemical properties of biological samples in situ. Many diseases affecting the central nervous system (CNS) have been studied using this method, to elucidate alterations in lipid oxidation or protein aggregation, among others. In this work, we describe in detail the characteristics between grey matter (GM) and white matter (WM) areas of the human brain by μFTIR, and we compare them with the mouse brain (strain C57BL/6), the most used animal model in neurological disorders. Our results show a clear different infrared profile between brain areas in the lipid region of both species. After applying a second derivative in the data, we established a 1.5 threshold value for the lipid/protein ratio to discriminate between GM and WM areas in non-pathological conditions. Furthermore, we demonstrated intrinsic differences of lipids and proteins by cerebral area. Lipids from GM present higher C=CH, C=O and CH3 functional groups compared to WM in humans and mice. Regarding proteins, GM present lower Amide II amounts and higher intramolecular β-sheet structure amounts with respect to WM in both species. However, the presence of intermolecular β-sheet structures, which is related to β-aggregation, was only observed in the GM of some human individuals. The present study defines the relevant biochemical properties of non-pathological human and mouse brains by μFTIR as a benchmark for future studies involving CNS pathological samples

    Metallosomes for biomedical applications by mixing molybdenum carbonyl metallosurfactants and phospholipids

    Get PDF
    New supramolecular systems have been prepared by mixing molybdenum organometallic metallosurfactants M(CO)5L and M(CO)4L2 {L = Ph2P(CH2)6SO3Na} with the phospholipid phosphatidylcholine. The analysis of the resulting supramolecular structures using dynamic light scattering and cryo-transmission electron microscopy has shown the formation of different aggregates depending on the metallosurfactant/phospholipid ratio, as well as a significantly different behaviour between the two studied metallosurfactants. Mixed vesicles, with properties very similar to liposomes, can be obtained with both compounds, and are called metallosomes. The formation of the mixed aggregates has also been studied by microfluidics using MeOH and EtOH as organic solvents, and it has been observed that the size of the aggregates is strongly dependent on the organic solvent used. In order to analyse the viability of these mixed systems as CO Releasing Molecules (CORMs) for biomedical applications, the CO release was studied by FT-IR spectroscopy, showing that they behave as photo-CORMs with visible and ultraviolet light. Toxicity studies of the different mixed aggregate systems have shown that metallosomes exhibit a very low toxicity, similar to liposomes that do not contain metallosurfactants, which is well below the results observed for pure metallosurfactants. Micro-FTIR microscopy using synchrotron radiation has shown the presence of metallosurfactants in cells. The results of this study show the influence of the length of the hydrocarbon chain on the properties of these mixed systems, compared with previously reported data
    corecore