9 research outputs found

    Surveillance for Waterborne-Disease Outbreaks -- United States, 1995-1996

    Get PDF
    PROBLEM/CONDITION: Since 1971, CDC and the U.S. Environmental Protection Agency have maintained a collaborative surveillance system for collecting and periodically reporting data that relate to occurrences and causes of waterborne-disease outbreaks (WBDOs). REPORTING PERIOD COVERED: This summary includes data for January 1995 through December 1996 and previously unreported outbreaks in 1994. DESCRIPTION OF THE SYSTEM: The surveillance system includes data about outbreaks associated with drinking water and recreational water. State, territorial, and local public health departments are primarily responsible for detecting and investigating WBDOs and for voluntarily reporting them to CDC on a standard form. RESULTS: For the period 1995-1996, 13 states reported a total of 22 outbreaks associated with drinking water. These outbreaks caused an estimated total of 2,567 persons to become ill. No deaths were reported. The microbe or chemical that caused the outbreak was identified for 14 (63.6%) of the 22 outbreaks. Giardia lamblia and Shigella sonnei each caused two (9.1%) of the 22 outbreaks; Escherichia coli O157:H7, Plesiomonas shigelloides, and a small round structured virus were implicated for one outbreak (4.5%) each. One of the two outbreaks of giardiasis involved the largest number of cases, with an estimated 1,449 ill persons. Seven outbreaks (31.8% of 22) of chemical poisoning, which involved a total of 90 persons, were reported. Copper and nitrite were associated with two outbreaks (9.1% of 22) each and sodium hydroxide, chlorine, and concentrated liquid soap with one outbreak (4.5%) each. Eleven (50.0%) of the 22 outbreaks were linked to well water, eight in noncommunity and three in community systems. Only three of the 10 outbreaks associated with community water systems were caused by problems at water treatment plants; the other seven resulted from problems in the water distribution systems and plumbing of individual facilities (e.g., a restaurant). Six of the seven outbreaks were associated with chemical contamination of the drinking water; the seventh outbreak was attributed to a small round structured virus. Four of the seven outbreaks occurred because of backflow or backsiphonage through a cross-connection, and two occurred because of high levels of copper that leached into water after the installation of new plumbing. For three of the four outbreaks caused by contamination from a cross-connection, an improperly installed vacuum breaker or a faulty backflow prevention device was identified; no protection against backsiphonage was found for the fourth outbreak. Thirty-seven outbreaks from 17 states were attributed to recreational water exposure and affected an estimated 9,129 persons, including 8,449 persons in two large outbreaks of cryptosporidiosis. Twenty-two (59.5%) of these 37 were outbreaks of gastroenteritis; nine (24.3%) were outbreaks of dermatitis; and six (16.2%) were single cases of primary amebic meningoencephalitis caused by Naegleria fowleri, all of which were fatal. The etiologic agent was identified for 33 (89.2%) of the 37 outbreaks. Six (27.3%) of the 22 outbreaks of gastroenteritis were caused by Cryptosporidium parvum and six (27.3%) by E. coli O157:H7. All of the latter were associated with unchlorinated water (i.e., in lakes) or inadequately chlorinated water (i.e., in a pool). Thirteen (59.1%) of these 22 outbreaks were associated with lake water, eight (36.4%) with swimming or wading pools, and one(4.5%) with a hot spring. Of the nine outbreaks of dermatitis, seven (77.8%) were outbreaks of Pseudomonas dermatitis associated with hot tubs, and two (22.2%) were lake-associated outbreaks of swimmer\u27s itch caused by Schistosoma species. INTERPRETATION: WBDOs caused by E. coli O157:H7 were reported more frequently than in previous years and were associated primarily with recreational lake water. This finding suggests the need for better monitoring of water quality and identification of sources of contamination. Although protozoan parasites, especially Cryptosporidium and Giardia, were associated with fewer reported outbreaks than in previous years, they caused large outbreaks that affected a total of approximately 10,000 persons; all of the outbreaks of cryptosporidiosis were associated with recreational water, primarily swimming pools. Prevention of pool-associated outbreaks caused by chlorine-resistant parasites (e.g., Cryptosporidium and to a lesser extent Giardia) is particularly difficult because it requires improved filtration methods as well as education of patrons about hazards associated with fecal accidents, especially in pools frequented by diaper-aged children. The proportion of reported drinking water outbreaks associated with community water systems that were attributed to problems at water treatment plants has steadily declined since 1989 (i.e., 72.7% for 1989-1990, 62.5% for 1991-1992, 57.1% for 1993-1994, and 30.0% for 1995-1996). This decrease might reflect improvements in water treatment and in operation of plants. The outbreaks attributed to contamination in the distribution system suggest that efforts should be increased to prevent cross-connections, especially by installing and monitoring backflow prevention devices. Actions Taken: Surveillance data that identify the types of water systems, their deficiencies, and the etiologic agents associated with outbreaks are used to evaluate the adequacy of current technologies for providing safe drinking and recreational water. In addition, they are used to establish research priorities and can lead to improved water-quality regulations

    Heterogeneity of H-K-ATPase-mediated acid secretion along the mouse collecting duct

    No full text
    In the collecting duct (CD), H-K-ATPases function in cation reabsorption and H secretion. This study evaluated H-K-ATPase-mediated H secretion along the mouse CD, measured as EIPA- and luminal bafilomycin A1-insensitive intracellular pH (pHi) recovery from acute H loading (NH4) using BCECF. pHi recovery was measured in 1) microperfused cortical, outer medullary, and inner medullary CDs (CCD, OMCD, and IMCD) from C57BL/6J mice fed a normal diet and 2) common murine CD cell lines. H-K-ATPase activity along the native, microperfused CD was greatest in the CCD, less in the OMCD, and least in the IMCD (0.10 ± 0.02, 0.04 ± 0.01, and 0.01 ± 0.002 U/min, respectively). H-K-ATPase activity was 0.30 ± 0.03 and 0.26 ± 0.03 in A- and B-type ICs, respectively, and was sensitive to Sch-28080 or ouabain. pHi recovery was greatest in the OMCD1 cell line (0.25 ± 0.01) and less in mpkCCDc14 (0.17 ± 0.01), mIMCD-K2 (0.12 ± 0.01), and mIMCD-3 (0.05 ± 0.01) cells. EIPA inhibited the majority of pHi recovery in these cells (100%, 64%, 75%, and 80% in mpkCCDc14, OMCD1, mIMCD-K2, and mIMCD-3, respectively). In OMCD1 cells, where EIPA-insensitive pHi recovery was greatest, H-K-ATPase activity was 0.10 ± 0.01 and was significantly inhibited (80%) by Sch-28080. We conclude that 1) H-K-ATPase-mediated H secretion in the native mouse CD is greatest in the ICs of the CCD, 2) A- and B-type ICs possess HKα1 and HKα2 H-K-ATPase activity, and 3) the OMCD1 cell line best exhibits H-K-ATPase

    The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice

    Get PDF
    The mineralocorticoid aldosterone is a major regulator of sodium transport in target epithelia and contributes to the control of blood pressure and cardiac function. It specifically functions to increase renal absorption of sodium from tubular fluid via regulation of the α subunit of the epithelial sodium channel (αENaC). We previously used microarray technology to identify the immediate transcriptional targets of aldosterone in a mouse inner medullary collecting duct cell line and found that the transcript induced to the greatest extent was the circadian clock gene Period 1. Here, we investigated the role of Period 1 in mediating the downstream effects of aldosterone in renal cells. Aldosterone treatment stimulated expression of Period 1 (Per1) mRNA in renal collecting duct cell lines and in the rodent kidney. RNA silencing of Period 1 dramatically decreased expression of mRNA encoding αENaC in the presence or absence of aldosterone. Furthermore, expression of αENaC-encoding mRNA was attenuated in the renal medulla of mice with disruption of the Per1 gene, and these mice exhibited increased urinary sodium excretion. Renal αENaC-encoding mRNA was expressed in an apparent circadian pattern, and this pattern was dramatically altered in mice lacking functional Period genes. These results suggest a role for Period 1 in the regulation of the renal epithelial sodium channel and more broadly implicate the circadian clock in control of sodium balance

    Aldosterone Modulates Steroid Receptor Binding to the Endothelin-1 Gene (edn1)*

    No full text
    Aldosterone and endothelin-1 (ET-1) act on collecting duct cells of the kidney and are important regulators of renal sodium transport and cardiovascular physiology. We recently identified the ET-1 gene (edn1) as a novel aldosterone-induced transcript. However, aldosterone action on edn1 has not been characterized at the present time. In this report, we show that aldosterone stimulated edn1 mRNA in acutely isolated rat inner medullary collecting duct cells ex vivo and ET-1 peptide in rat inner medulla in vivo. Aldosterone induction of edn1 mRNA occurred in cortical, outer medullary, and inner medullary collecting duct cells in vitro. Inspection of the edn1 promoter revealed two putative hormone response elements. Levels of heterogeneous nuclear RNA synthesis demonstrated that edn1 mRNA stimulation occurred at the level of transcription. RNA knockdowns corroborated pharmacological studies and demonstrated both mineralocorticoid receptor and glucocorticoid receptor participated in this response. Aldosterone resulted in dose-dependent nuclear translocation and binding of mineralocorticoid receptor and glucocorticoid receptor to the edn1 hormone response elements. Hormone receptors mediated the association of chromatin remodeling complexes, histone modification, and RNA polymerase II at the edn1 promoter. Direct interaction between aldosterone and ET-1 has important implications for renal and cardiovascular function

    Genome-wide interaction analysis of folate for colorectal cancer risk

    No full text
    Background: Epidemiological and experimental evidence suggests that higher folate intake is associated with decreased colorectal cancer (CRC) risk; however, the mechanisms underlying this relationship are not fully understood. Genetic variation that may have a direct or indirect impact on folate metabolism can provide insights into folate's role in CRC. Objectives: Our aim was to perform a genome-wide interaction analysis to identify genetic variants that may modify the association of folate on CRC risk. Methods: We applied traditional case-control logistic regression, joint 3-degree of freedom, and a 2-step weighted hypothesis approach to test the interactions of common variants (allele frequency >1%) across the genome and dietary folate, folic acid supplement use, and total folate in relation to risk of CRC in 30,550 cases and 42,336 controls from 51 studies from 3 genetic consortia (CCFR, CORECT, GECCO). Results: Inverse associations of dietary, total folate, and folic acid supplement with CRC were found (odds ratio [OR]: 0.93; 95% confidence interval [CI]: 0.90, 0.96; and 0.91; 95% CI: 0.89, 0.94 per quartile higher intake, and 0.82 (95% CI: 0.78, 0.88) for users compared with nonusers, respectively). Interactions (P-interaction < 5×10-8) of folic acid supplement and variants in the 3p25.2 locus (in the region of Synapsin II [SYN2]/tissue inhibitor of metalloproteinase 4 [TIMP4]) were found using traditional interaction analysis, with variant rs150924902 (located upstream to SYN2) showing the strongest interaction. In stratified analyses by rs150924902 genotypes, folate supplementation was associated with decreased CRC risk among those carrying the TT genotype (OR: 0.82; 95% CI: 0.79, 0.86) but increased CRC risk among those carrying the TA genotype (OR: 1.63; 95% CI: 1.29, 2.05), suggesting a qualitative interaction (P-interaction = 1.4×10-8). No interactions were observed for dietary and total folate. Conclusions: Variation in 3p25.2 locus may modify the association of folate supplement with CRC risk. Experimental studies and studies incorporating other relevant omics data are warranted to validate this finding
    corecore