567 research outputs found

    Life cycle analysis for the cultivation and combustion of miscanthus for biofuel compared with natural gas

    Get PDF
    As negative environmental and economic impacts of fossil fuels have escalated, so has the importance of renewable bioenergy crops whose feedstocks are noncompetitive with food supplies. Compared with fossil fuels, use of lignocellulosic feedstocks offers potential for greenhouse gas reduction and highly positive net energy returns because of low input demand and high yields per unit of land area, thus making them advantageous for the emerging biofuel industry. The aim of this study was to simulate environmental impacts of producing a biofuel grass for combustion use based on the inventory of inputs and their effects on eutrophication of surface waters; acidification of land and water; photochemical ozone-creation potential (i.e. smog); global atmospheric warming; and nonrenewable resource depletion (mainly fossil fuels). Hybrid miscanthus (Miscanthus x giganteus, or giant miscanthus), a perennial C4 grass originating from East Asia, was compared with natural gas by using a life-cycle analysis model for biomass production in France. The analysis showed a trade-off between natural gas and miscanthus. The latter had a lower global-warming potential and consumed less primary nonrenewable energy but produced more emissions that promote acidification and eutrophication than did natural gas

    High‐Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing

    Get PDF
    This is the peer reviewed version of the following article:Ioanna D. Styliari, et al, ‘High‐Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing’, Macromolecular Materials and Engineering, (2018), which has been published in final form at https://doi.org/10.1002/mame.201800146. Under embargo until 27 May 2019. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.The self‐assembly of specific polymers into well‐defined nanoparticles (NPs) is of great interest to the pharmaceutical industry as the resultant materials can act as drug delivery vehicles. In this work, a high‐throughput method to screen the ability of polymers to self‐assemble into NPs using a picoliter inkjet printer is presented. By dispensing polymer solutions in dimethyl sulfoxide (DMSO) from the printer into the wells of a 96‐well plate, containing water as an antisolvent, 50 suspensions are screened for nanoparticle formation rapidly using only nanoliters to microliters. A variety of polymer classes are used and in situ characterization of the submicroliter nanosuspensions shows that the particle size distributions match those of nanoparticles made from bulk suspensions. Dispensing organic polymer solutions into well plates via the printer is thus shown to be a reproducible and fast method for screening nanoparticle formation which uses two to three orders of magnitude less material than conventional techniques. Finally, a pilot study for a high‐throughput pipeline of nanoparticle production, physical property characterization, and cytocompatibility demonstrates the feasibility of the printing approach for screening of nanodrug delivery formulations. Nanoparticles are produced in the well plates, characterized for size and evaluated for effects on metabolic activity of lung cancer cells.Peer reviewe

    MIF contributes to Trypanosoma brucei associated immunopathogenicity development

    Get PDF
    African trypanosomiasis is a chronic debilitating disease affecting the health and economic well-being of many people in developing countries. The pathogenicity associated with this disease involves a persistent inflammatory response, whereby M1-type myeloid cells, including Ly6C(high) inflammatory monocytes, are centrally implicated. A comparative gene analysis between trypanosusceptible and trypanotolerant animals identified MIF (macrophage migrating inhibitory factor) as an important pathogenic candidate molecule. Using MIF-deficient mice and anti-MIF antibody treated mice, we show that MIF mediates the pathogenic inflammatory immune response and increases the recruitment of inflammatory monocytes and neutrophils to contribute to liver injury in Trypanosoma brucei infected mice. Moreover, neutrophil-derived MIF contributed more significantly than monocyte-derived MIF to increased pathogenic liver TNF production and liver injury during trypanosome infection. MIF deficient animals also featured limited anemia, coinciding with increased iron bio-availability, improved erythropoiesis and reduced RBC clearance during the chronic phase of infection. Our data suggest that MIF promotes the most prominent pathological features of experimental trypanosome infections (i.e. anemia and liver injury), and prompt considering MIF as a novel target for treatment of trypanosomiasis-associated immunopathogenicity

    Using Fractional Cascading to Accelerate Cross Section Lookups in Monte Carlo Neutron Transport Calculations

    Get PDF
    We describe and test a technique for carrying out energy grid searches in continuous-energy Monte Carlo (MC) neutron transport calculations that represents an optimal compromise between grid search performance and memory footprint. The method, based on the fractional cascading technique and referred to as the cascade grid, is tested within the OpenMC Monte Carlo code, and performance results comparing the method with existing approaches are presented for the Hoogenboom-Martin reactor benchmark. The cascade grid achieves significant speedups in calculation rate with negligible initialization overhead while not increasing the memory footprint by more than 2x.

    Versatile routes to functional RAFT chain transfer agents through the Passerini multicomponent reaction

    Get PDF
    The widespread adoption of RAFT polymerization stems partly from the ease and utility of installing a functional chain transfer agent onto the ends of the generated polymer chains. In parallel, the Passerini multicomponent reaction offers great versatility in converting a wide range of easily accessible building blocks to functional materials. In this work, we have combined the two approaches such that a single, commonly available, RAFT agent is used in Passerini reactions to generate a variety of multifunctional RAFT chain transfer agents containing ester linkages. Reactions to generate the multifunctional RAFT agents took place under mild conditions and in good yields. The resulting Passerini-RAFT agents were able to exert control over radical polymerization to generate materials of well-defined molecular weights and dispersity. Furthermore, the presence in these polymer cores of ester and amide functionality through the Passerini chemistries, provided regions in the materials which are inherently biodegradable, facilitating any subsequent biomedical applications. The work overall thus demonstrates a versatile and facile synthetic route to multi functional RAFT chain transfer agents and biodegradable polymers

    Viability of novae as sources of Galactic lithium

    Full text link
    Of all the light elements, the evolution of lithium (Li) in the Milky Way is perhaps the most difficult to explain. Li is difficult to synthesize and is easily destroyed, making most stellar sites unsuitable for producing Li in sufficient quantities to account for the proto-solar abundance. For decades, novae have been proposed as a potential explanation to this 'Galactic Li problem', and the recent detection of 7Be in the ejecta of multiple nova eruptions has breathed new life into this theory. In this work, we assess the viability of novae as dominant producers of Li in the Milky Way. We present the most comprehensive treatment of novae in a galactic chemical evolution code to date, testing theoretical- and observationally-derived nova Li yields by integrating metallicity-dependent nova ejecta profiles computed using the binary population synthesis code binary c with the galactic chemical evolution code OMEGA+. We find that our galactic chemical evolution models which use observationally-derived Li yields account for the proto-solar Li abundance very well, while models relying on theoretical nova yields cannot reproduce the proto-solar observation. A brief exploration of physical uncertainties including single-stellar yields, the metallicity resolution of our nova treatment, common-envelope physics, and nova accretion efficiencies indicates that this result is robust to physical assumptions. Scatter within the observationally-derived Li yields in novae is identified as the primary source of uncertainty, motivating further observations of 7Be in nova ejecta.Comment: Accepted for publication in ApJL 28/7/202

    Chemical Evolution of Fluorine in the Milky Way

    Get PDF
    Fluorine has many different potential sites and channels of production, making narrowing down a dominant site of fluorine production particularly challenging. In this work, we investigate which sources are the dominant contributors to the galactic fluorine by comparing chemical evolution models to observations of fluorine abundances in Milky Way stars covering a metallicity range of −2 < [Fe/H] < 0.4 and upper limits in the range of −3.4 < [Fe/H] < −2.3. In our models, we use a variety of stellar yield sets in order to explore the impact of varying both asymptotic giant branch (AGB) and massive star yields on the chemical evolution of fluorine. In particular, we investigate different prescriptions for initial rotational velocity in massive stars as well as a metallicity-dependent mix of rotational velocities. We find that the observed [F/O] and [F/Fe] abundance ratios at low metallicity and the increasing trend of [F/Ba] at [Fe/H] ≳ −1 can only be reproduced by chemical evolution models assuming, at all metallicities, a contribution from rapidly rotating massive stars with initial rotational velocities as high as 300 km s−1. A mix of rotational velocities may provide a more physical solution than the sole use of massive stars with vrot  =  300 km s−1, which are predicted to overestimate the fluorine and average s-process elemental abundances at [Fe/H] ≳ −1. The contribution from AGB stars is predicted to start at [Fe/H] ≈ −1 and becomes increasingly important at high metallicity, being strictly coupled to the evolution of the nitrogen abundance. Finally, by using modern yield sets, we investigate the fluorine abundances of Wolf–Rayet winds, ruling them out as dominant contributors to the galactic fluorine

    Observational constraints on the origin of the elements. VI. Origin and evolution of neutron-capture elements as probed by the Gaia-ESO survey

    Get PDF
    Most heavy elements beyond the iron peak are synthesized via neutron capture processes. The nature of the astrophysical sites of neutron capture processes is still very unclear. In this work we explore the observational constraints of the chemical abundances of s-process and r-process elements on the sites of neutron-capture processes by applying Galactic chemical evolution (GCE) models to the data from Gaia-ESO large spectroscopic stellar survey. For the r-process, the [Eu/Fe]-[Fe/H] distribution suggests a short delay time of the site that produces Eu. Other independent observations (e.g., NS-NS binaries), however, suggest a significant fraction of long delayed (>1>1Gyr) neutron star mergers (NSM). When assuming NSM as the only r-process sites, these two observational constraints are inconsistent at above 1σ\sigma level. Including short delayed r-process sites like magneto-rotational supernova can resolve this inconsistency. For the s-process, we find a weak metallicity dependence of the [Ba/Y] ratio, which traces the s-process efficiency. Our GCE model with up-to-date yields of AGB stars qualitatively reproduces this metallicity dependence, but the model predicts a much higher [Ba/Y] ratio compared to the data. This mismatch suggests that the s-process efficiency of low mass AGB stars in the current AGB nucleosynthesis models could be overestimated.Comment: 14 pages, 11 figures, accepted by MNRA

    Galactic Chemical Evolution of Radioactive Isotopes with an s-process Contribution

    Get PDF
    Analysis of inclusions in primitive meteorites reveals that several short-lived radionuclides (SLRs) with half-lives of 0.1-100 Myr existed in the early solar system (ESS). We investigate the ESS origin of 107Pd, 135Cs, and 182Hf, which are produced by slow neutron captures (the s-process) in asymptotic giant branch (AGB) stars. We modeled the Galactic abundances of these SLRs using the OMEGA+ galactic chemical evolution (GCE) code and two sets of mass- and metallicity-dependent AGB nucleosynthesis yields (Monash and FRUITY). Depending on the ratio of the mean-life τ of the SLR to the average length of time between the formations of AGB progenitors γ, we calculate timescales relevant for the birth of the Sun. If τ/γ ⪆ 2, we predict self-consistent isolation times between 9 and 26 Myr by decaying the GCE predicted 107Pd/108Pd, 135Cs/133Cs, and 182Hf/180Hf ratios to their respective ESS ratios. The predicted 107Pd/182Hf ratio indicates that our GCE models are missing 9%-73% of 107Pd and 108Pd in the ESS. This missing component may have come from AGB stars of higher metallicity than those that contributed to the ESS in our GCE code. If τ/γ ≲ 0.3, we calculate instead the time (T LE) from the last nucleosynthesis event that added the SLRs into the presolar matter to the formation of the oldest solids in the ESS. For the 2 M o˙, Z = 0.01 Monash model we find a self-consistent solution of T LE = 25.5 Myr

    Inventing and implementing future-ready archival education

    Get PDF
    The Archival / Preservation Education SIG panel engages with community-responsive master's-level archival education. Seven ten-minute individual presentations and audience discussion traverse the decision points in managing curricular change; presenters bring perspectives from multiple states. "Audio Preservation as Metacognitive Archival Education" by Sarah Buchanan discusses how audiovisual archiving experiences support the continual development of students' metacognitive skills during their graduate program. Based on community collaboration, the activity progressions provide students with digital experiences, faculty with curricular guidance, and online audiences with more representative primary sources. "LIS Students Contributing to Building a Sustainable Digital Community Archive" by Krystyna Matusiak describes a community-based two-year project aimed at preserving and promoting the Park County Local History Archive in rural Colorado, now available at https://pclha.cvlcollections.org/. The presentation illustrates students' many contributions: organizing materials and assessing their copyright status, digitizing photographs, converting oral histories, creating metadata records, building exhibits, and showcasing community resilience. "Changing Horses Midstream: Revising Curriculum and Student Engagement to Ensure a Resilient Future" by Edward Benoit, III and Amanda Lima discusses the revision process for transitioning two programs to LSU Online, compares assessments from the traditional and LSU Online programs, and reflects on completing the first year. Additionally, the presenters will highlight the use of student-run Slack channels and virtual coffee hours as online student community building tools for the new LSU Online students, and discuss the school's future in the platform. "Producing Practical Professionals with Curriculum for Equity, Diversity, and Inclusion" by Aisha Johnson acknowledges that cultural heritage programs should address the need for cultural preservation and reflection, for archivists of Black, Indigenous, and Persons of Color (BIPOC) heritage. The presentation will review a reestablished Archives and Records Management concentration, with core archival and complementary knowledge curriculum, as a case study for exploring new approaches to pedagogy on the purpose, value, and importance of archives in society. "Learning from Experience: Lessons from a Virtual Service-Learning Experiment" by Colin Post discusses a service-learning project documenting an artist's performance as well as their artwork archives. While such projects place even greater pressure on the instructor as a project manager, they enhance connections between theory and practice in online courses. "Lessons Learned from the Digital Preservation Outreach and Education Network" by Anthony Cocciolo and Erin Barsan discusses the types of needs they have uncovered, the communities served, and the lessons learned over the course of a year running DPOE-N. The Network's response to the COVID-19 pandemic comprises microfunding for professional development and emergency hardware support for cultural heritage professionals. "National Forum Grant Project: Exploring New Frontiers in 21st Century Archival Education" by Alex Poole and Jane Zhang discusses the environmental scan, National Forum event, and final outputs of their year-long project. The presentation addresses motivation and need, historical and current context, research components, and intended results and impact. The moderator will facilitate Q&A within and across the presentations
    corecore