919 research outputs found

    Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology

    Get PDF
    Understanding soil systems is critical because they form the structural and nutritional foundation for plants and thus every terrestrial habitat and agricultural system. In this paper, we encourage increased use of mathematical models to drive forward understanding of interactions in soil ecological systems. We discuss several distinctive features of soil ecosystems and empirical studies of them. We explore some perceptions that have previously deterred more extensive use of models in soil ecology and some advances that have already been made using models to elucidate soil ecological interactions. We provide examples where mathematical models have been used to test the plausibility of hypothesized mechanisms, to explore systems where experimental manipulations are currently impossible, or to determine the most important variables to measure in experimental and natural systems. To aid in the development of theory in this field, we present a table describing major soil ecology topics, the theory previously used, and providing key terms for theoretical approaches that could potentially address them. We then provide examples from the table that may either contribute to important incremental developments in soil science or potentially revolutionize our understanding of plant–soil systems. We challenge scientists and mathematicians to push theoretical explorations in soil systems further and highlight three major areas for the development of mathematical models in soil ecology: theory spanning scales and ecological hierarchies, processes, and evolution

    The association of long-term exposure to criteria air pollutants, fine particulate matter components, and airborne trace metals with late-life brain amyloid burden in the Atherosclerosis Risk in Communities (ARIC) study

    Get PDF
    BACKGROUND: Studies suggest associations between long-term ambient air pollution exposure and outcomes related to Alzheimer\u27s disease (AD). Whether a link exists between pollutants and brain amyloid accumulation, a biomarker of AD, is unclear. We assessed whether long-term air pollutant exposures are associated with late-life brain amyloid deposition in Atherosclerosis Risk in Communities (ARIC) study participants. METHODS: We used a chemical transport model with data fusion to estimate ambient concentrations of PM RESULTS: At PET imaging, eligible participants (N = 318) had a mean age of 78 years, 56% were female, 43% were Black, and 27% had mild cognitive impairment. We did not find evidence of associations between long-term exposure to any pollutant and brain amyloid positivity in adjusted models. Findings were materially unchanged in sensitivity analyses using alternate air pollution estimation approaches for PM CONCLUSIONS: Air pollution may impact cognition and dementia independent of amyloid accumulation, though whether air pollution influences AD pathogenesis later in the disease course or at higher exposure levels deserves further consideration

    Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology

    Get PDF
    Understanding soil systems is critical because they form the structural and nutritional foundation for plants and thus every terrestrial habitat and agricultural system. In this paper, we encourage increased use of mathematical models to drive forward understanding of interactions in soil ecological systems. We discuss several distinctive features of soil ecosystems and empirical studies of them. We explore some perceptions that have previously deterred more extensive use of models in soil ecology and some advances that have already been made using models to elucidate soil ecological interactions. We provide examples where mathematical models have been used to test the plausibility of hypothesized mechanisms, to explore systems where experimental manipulations are currently impossible, or to determine the most important variables to measure in experimental and natural systems. To aid in the development of theory in this field, we present a table describing major soil ecology topics, the theory previously used, and providing key terms for theoretical approaches that could potentially address them. We then provide examples from the table that may either contribute to important incremental developments in soil science or potentially revolutionize our understanding of plant–soil systems. We challenge scientists and mathematicians to push theoretical explorations in soil systems further and highlight three major areas for the development of mathematical models in soil ecology: theory spanning scales and ecological hierarchies, processes, and evolution

    A window to quantum gravity phenomena in the emergence of the seeds of cosmic structure

    Full text link
    Inflationary cosmology has, in the last few years,received a strong dose of support from observations. The fact that the fluctuation spectrum can be extracted from the inflationary scenario through an analysis that involves quantum field theory in curved space-time, and that it coincides with the observational data has lead to a certain complacency in the community, which prevents the critical analysis of the obscure spots in the derivation. We argue here briefly, as we have discussed in more detail elsewhere, that there is something important missing in our understanding of the origin of the seeds of Cosmic Structure, as is evidenced by the fact that in the standard accounts the inhomogeneity and anisotropy of our universe seems to emerge from an exactly homogeneous andisotropic initial state through processes that do not break those symmetries. This article gives a very brief recount of the problems faced by the arguments based on established physics. The conclusion is that we need some new physics to be able to fully address the problem. The article then exposes one avenue that has been used to address the central issue and elaborates on the degree to which, the new approach makes different predictions from the standard analyses. The approach is inspired on Penrose's proposals that Quantum Gravity might lead to a real, dynamical collapse of the wave function, a process that we argued has the properties needed to extract us from the theoretical impasse described above.Comment: 13 pages, 3 figures. To appear in DICE 2008 conference proceeding

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries: pooled analysis of 2,086 population-based studies with 65 million participants

    Get PDF
    Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi

    The OGLE View of Microlensing towards the Magellanic Clouds. II. OGLE-II SMC data

    Full text link
    The primary goal of this paper is to provide the evidence that can either prove or falsify the hypothesis that dark matter in the Galactic halo can clump into stellar-mass compact objects. If such objects existed, they would act as lenses to external sources in the Magellanic Clouds, giving rise to an observable effect of microlensing. We present the results of our search for such events, based on the data from the second phase of the OGLE survey (1996-2000) towards the SMC. The data set we used is comprised of 2.1 million monitored sources distributed over an area of 2.4 square degrees. We found only one microlensing event candidate, however its poor quality light curve limited our discussion on the exact distance to the lensing object. Given a single event, taking the blending (crowding of stars) into account for the detection efficiency simulations, and deriving the HST-corrected number of monitored stars, the microlensing optical depth is tau=(1.55+-1.55)10e-7. This result is consistent with the expected SMC self-lensing signal, with no need of introducing dark matter microlenses. Rejecting the unconvincing event leads to the upper limit on the fraction of dark matter in the form of MACHOs to f<20 per cent for deflectors' masses around 0.4 Msun and f<11 per cent for masses between 0.003 and 0.2 Msun (95 per cent confidence limit). Our result indicates that the Milky Way's dark matter is unlikely to be clumpy and form compact objects in the sub-solar-mass range.Comment: Accepted for publication in MNRAS. Data in electronic form are available on the OGLE's website: http://ogle.astrouw.edu.pl

    Drivers of diversification and pluriactivity among smallholder farmers—evidence from Nigeria

    Get PDF
    Diversification and pluriactivity have become a norm among farm business owners (FBOs) due to persistent low farm income. This study applies the resource-based theory to examine drivers of diversification and livelihood income-oriented towards a sustainable livelihood. Our framework develops hypotheses about the impact of internal and external resources on livelihood choices at the household level. We use a survey of 480 rural Nigerian farmers (agripreneurs), applying a Multivariate Tobit to test our framework. We find that education plays the most significant role in all types of employment options. The more FBOs are educated, the more the likelihood that they will choose non-farm or wage employment. This study revealed that while the agriculture sector’s share of rural employment is declining, non-farm is on the increase. More so, there is a decline in farming among the young generation, marital status bias and gender influence in resource allocation. The socioeconomic (income and food security) and socio-cultural (employment and rural-urban migration) implications of rural sustainability linked to UN Development Goals have been highlighted and analysed in this article
    • 

    corecore