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A R T I C L E  I N F O   
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A B S T R A C T   

Background: Studies suggest associations between long-term ambient air pollution exposure and outcomes related 
to Alzheimer’s disease (AD). Whether a link exists between pollutants and brain amyloid accumulation, a 
biomarker of AD, is unclear. We assessed whether long-term air pollutant exposures are associated with late-life 
brain amyloid deposition in Atherosclerosis Risk in Communities (ARIC) study participants. 
Methods: We used a chemical transport model with data fusion to estimate ambient concentrations of PM2.5 and 
its components, NO2, NOx, O3 (24-hour and 8-hour), CO, and airborne trace metals. We linked concentrations to 
geocoded participant addresses and calculated 10-year mean exposures (2002 to 2011). Brain amyloid deposition 
was measured using florbetapir amyloid positron emission tomography (PET) scans in 346 participants without 
dementia in 2012–2014, and we defined amyloid positivity as a global cortical standardized uptake value ratio ≥
the sample median of 1.2. We used logistic regression models to quantify the association between amyloid 
positivity and each air pollutant, adjusting for putative confounders. In sensitivity analyses, we considered 
whether use of alternate air pollution estimation approaches impacted findings for PM2.5, NO2, NOx, and 24-hour 
O3. 
Results: At PET imaging, eligible participants (N = 318) had a mean age of 78 years, 56% were female, 43% were 
Black, and 27% had mild cognitive impairment. We did not find evidence of associations between long-term 
exposure to any pollutant and brain amyloid positivity in adjusted models. Findings were materially 
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unchanged in sensitivity analyses using alternate air pollution estimation approaches for PM2.5, NO2, NOx, and 
24-hour O3. 
Conclusions: Air pollution may impact cognition and dementia independent of amyloid accumulation, though 
whether air pollution influences AD pathogenesis later in the disease course or at higher exposure levels deserves 
further consideration.   

1. Introduction 

Identifying modifiable risk factors for Alzheimer’s disease (AD) re
mains a top priority for dementia-related research, as the failure rate for 
clinical trials of AD treatments remains staggeringly high (Cummings 
et al., 2014). Specifically, assessing the potential impact of environ
mental exposures on AD risk has important implications for primary 
prevention efforts since many are regulated at the population level. 
Recent growth in the literature linking long-term, ambient air pollution 
to AD-related outcomes has been dramatic. (Weuve et al., 2021) While 
the evidence remains mixed, multiple studies have reported associations 
between criteria air pollutants and cognitive decline (Tonne et al., 2014; 
Weuve et al., 2012; Duchesne et al., 2022), incident dementia (Oudin 
et al., 2016; Chen et al., 2017), progression from mild cognitive 
impairment to dementia (Wu et al., 2022), and magnetic resonance 
imaging (MRI)-based measures of brain morphology. (Casanova et al., 
2016; Chen et al., 2015; Power et al., 2018; Wilker et al., 2015). 

The mechanisms underlying such associations remain unclear. 
However, the beta-amyloid plaques that characterize AD may form in 
response to inflammation (McGeer and McGeer, 2013) and/or oxidative 
stress (Cai et al., 2011), suggesting a potential mechanism linking air 
pollution to AD. Animal studies show that concentrated air pollution 
exposure and some heavy metal components of particulate matter 
stimulate accumulation of reactive oxygen species (ROS) (Bai et al., 
2020; Gurgueira et al., 2002) and induce oxidative stress in the brain 
(Durga et al., 2015). Likewise, particulate matter increases cerebral pro- 
inflammatory cytokines (Durga et al., 2015; Sahu et al., 2021) and 
promotes vascular inflammation (Sun et al., 2005). Mechanistic studies 
demonstrate that concentrated air pollution exposure increases cerebral 
AB42 and AB40 (the primary components of amyloid plaques) (Durga 
et al., 2015; Bhatt et al., 2015), the AB42:40 ratio (Patten et al., 2021), 
and amyloid plaque accumulation in rodents (Patten et al., 2021; Cac
ciottolo et al., 2017). Additionally, several studies report increases in 
oxidative stress, inflammation, and cerebral AB42 among dogs and 
humans living in Mexico City (Calderón-Garcidueñas et al., 2012; 
Calderón-Garcidueñas et al., 2008; Calderón-Garcidueñas et al., 2004), 
where average air pollution concentrations exceed US Environmental 
Protection Agency (EPA) air quality standards. 

Findings from studies examining associations between ambient air 
pollution exposure and brain amyloid deposition in humans (Alemany 
et al., 2021; Iaccarino et al., 2021; Lee et al., 2020; Shaffer et al., 2021) 
have been inconsistent, with limited consideration of criteria air pol
lutants other than fine particulate matter (PM2.5). Moreover, particulate 
matter itself is a heterogeneous mixture of components including sul
fates, nitrates, organic and elemental carbon, ammonium, and trace 
metals that may have different toxicity and impact on AD risk. To our 
knowledge, no study thus far has considered whether PM2.5 components 
are associated with human brain amyloid deposition. Finally, existing 
epidemiologic studies of air pollution and brain amyloid deposition may 
not generalize to the broader US population because they have either 
enrolled persons who are already presenting with cognitive impairment 
(Iaccarino et al., 2021) or those with AD predisposition (Alemany et al., 
2021), or are conducted in areas with ambient air pollution exposures 
well above those in the US (Lee et al., 2020). To address these gaps, we 
estimated the association between long-term exposure to criteria air 
pollutants, components of PM2.5, and airborne trace metals with late-life 
brain amyloid deposition in the Atherosclerosis Risk in Communities 
(ARIC) study cohort. 

2. Methods 

2a. Sample 

The ARIC study recruited 15,792 participants from four US com
munities: Minneapolis suburbs, MN; Jackson, MS; Forsyth County, NC; 
and Washington County, MD. All participants were aged 45–64 years at 
recruitment, and all those recruited in MS were Black. The first four 
clinical visits took place roughly every three years (visit 1, 1987–1989; 
visit 2, 1990–1992; visit 3, 1993–1995; visit 4, 1996–1998). During visit 
5 (2011–2013), participants with a prior ARIC brain MRI scan or evi
dence of cognitive impairment or decline and an age-stratified sample of 
those with normal cognition were invited to complete brain MRIs. A 
subset of those who completed MRIs at three ARIC study centers (MS, 
NC, and MD) and did not have dementia, heavy current alcohol use, 
renal dysfunction, or heart rate-corrected QT interval prolongation were 
invited for florbetapir (amyloid) positron emission tomography (PET) 
scans as part of the ARIC-PET ancillary study. Ultimately, 346 ARIC 
participants underwent amyloid-PET scans in 2012–2014. Study pro
cedures were reviewed and approved by the institutional review board 
of each study center. All ARIC participants provided written informed 
consent. 

After excluding participants who were not White in MD or NC (due to 
small numbers in other race categories at these study centers, N = 8), 
who were missing exposure (N = 8) or covariate data (N = 10), and who 
did not consent to use of genetic data (N = 1), as well as one participant 
who was retroactively diagnosed with dementia at the time of PET scan, 
our final analytic sample included 318 participants. 

2b. Exposure 

We considered 10-year exposure to criteria air pollutants (PM2.5, 
nitrogen dioxide [NO2], oxides of nitrogen [NOx], 24-hour ozone [O3], 
8-hour O3, and carbon monoxide [CO]), components of fine particulate 
matter (sulfates [SO4], ammonium [NH4], nitrates [NO3], elemental 
carbon [EC], and organic carbon [OC]), and airborne trace metals with 
prior evidence of toxicity and acceptable estimation model performance 
(copper [Cu], iron [Fe], mercury [Hg], nickel [Ni], lead [Pb], vanadium 
[V], and zinc [Zn]). 

We used a chemical transport model with observational data fusion 
to predict annual average pollutant concentrations in nested 1.33–, 4-, 
and 12-km gridded rasters approximately centered on ARIC recruitment 
sites. We derived two separate set of exposure predictions (CMAQ-NEI 
and CMAQ-EDGAR) (Byun and Schere, 2006) for each gridded raster. 
Both sets were derived using the Community Multiscale Air Quality 
(CMAQ) chemical transport model, incorporating data on emissions, 
biogenic emissions, and weather. The two sets of predictions differed 
only based on which emissions inventory was used in the process, either 
the National Emissions Inventory [NEI] or the Emissions Database for 
Global Atmospheric Research [EDGAR]). After exploratory analyses 
suggested minimal impact on accuracy of annual estimates, simulations 
were run for only four representative months (January, April, July, and 
October) of each year, in order to reduce computation time. For each 
representative month, hourly predictions from each month were 
aggregated to obtain monthly predictions, and then averaged again to 
obtain annual predictions for each calendar year. We then weighted the 
two sets of annual predictions (CMAQ-NEI and CMAQ-EDGAR) to 
maximize agreement with annual air pollution concentrations measured 
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at US EPA regulatory monitors. Finally, each weighted average annual 
prediction was fused with observational data to further mitigate any 
systematic bias in model predictions (Chen et al., 2014; Hu et al., 2017). 

We conducted validation exercises using leave-one-out cross-vali
dation to assess model accuracy. Specifically, we used data on annual 
average air pollution exposures at EPA National Ambient Air Quality 
Standards (NAAQS) monitor sites within the spatial domains covered by 
the 1.33–, 4-, and 12-km gridded rasters as available for all pollutants 
except trace metals. Model performance for estimated annual PM2.5 
levels from 2000 to 2012 was strong (R2 for 1.33–, 4-, and 12-km grid 
cells of 0.82, 0.77, and 0.78, respectively). Cross-validated R2 values for 
annual exposure to ammonium (0.97 for 1.33-km, 0.91 for 4-km, and 
0.77 for 12-km grid cells), sulfates (0.98 for 1.33-km, 0.96 for 4-km, and 
0.89 for 12-km grid cells), and nitrates (0.97 for 1.33-km, 0.85 for 4-km, 
and 0.84 for 12-km grid cells) were similarly high. Agreement was 
generally fair to moderate for gaseous pollutants (R2 for NO2, NOx, and 
CO in 1.33-km grid cells of 0.37, 0.46, and 0.66, respectively, and R2 for 
24-hour and 8-hour O3 in 4-km grid cells of 0.53 and 0.39, respectively), 
elemental carbon (R2 range across raster resolutions, as available: 0.19 
to 0.63), and organic carbon (R2 range across raster resolutions: 0.32 to 
0.51). Cross-validation procedures for trace metals in 12-km rasters 
were conducted among monitoring stations containing at least 12 pairs 
of prediction-observations after setting both predicted and observed 
annual averages at or below the minimum detectable limit (MDL) to the 
MDL value. Trace metal cross-validation R2 values were as follows: Cu, 
0.71; Fe, 0.68; Hg; 0.88; Ni, 0.50; Pb, 0.86; V, 0.76; and Zn, 0.80. 

Participant addresses collected at each ARIC visit and during annual 
telephone interviews were standardized to US postal service formats and 
geocoded by a commercial vendor with excellent accuracy (Whitsel 
et al., 2006; Whitsel et al., 2004). Geocoded participant address co
ordinates were then joined to grid cell-specific exposures whenever the 
geocoded addresses fell within the spatial domains for which 1.33–, 4-, 
or 12-km gridded estimates were created. Participant exposures were 
assigned based on the finest spatial resolution of air pollutant data 
available for participant residential addresses. To account for residential 
mobility, participant exposures were weighted by the amount of time 
spent at each recorded residential address within a given calendar year. 
Because amyloid plaque accumulates long before the onset of dementia 
symptoms (Villemagne et al., 2013), we averaged participant-specific 
air pollutant concentrations over ten years (from 2002 to 2011). 

2c. Outcome 

Brain amyloid deposition was measured with florbetapir PET scans. 
Detailed methods have been previously described (Gottesman et al., 
2016). 3T MRI scans were conducted at ARIC study centers from 2011 to 
2013. PET scans were conducted within one year of MRIs (from 2012 to 
2014). Participants were injected with florbetapir isotope and under
went four 5-minute scans. The Johns Hopkins University PET image 
analysis center processed the data and calculated standardized uptake 
value ratios (SUVRs) in 34 manually drawn regions of interest using 
cerebellum gray matter as the reference. Global amyloid deposition was 
calculated as a weighted average of SUVRs in orbitofrontal, prefrontal, 
and superior frontal cortices; the lateral temporal, parietal, and occipital 
lobes; the precuneus; the anterior cingulate; and the posterior cingulate. 
Because global SUVR is heavily skewed, previous analyses in the ARIC- 
PET cohort have considered those with a global SUVR above the median 
of 1.2 to have elevated brain amyloid deposition (Gottesman et al., 
2016; Gottesman et al., 2017). Given this prior work, and the use of 
multiple different cutoffs to historically define amyloid positivity in the 
literature (Jansen et al., 2015), we also use this cutoff to define amyloid 
positivity. 

2d. Covariates 

We used self-reported data to characterize age at the time of PET 

scan, sex, and education (less than high school, high school or equiva
lent, greater than high school). We collapsed race and study center to 
derive a race-center variable (Black in MS, White in NC, and White in 
MD). Procedures for adjudicating cognitive status in ARIC have been 
previously described (Knopman et al., 2016); briefly, participants were 
administered the Delayed Word Recall Test (Knopman and Ryberg, 
1989), the Digit Symbol Substitution Test (Wechsler and WAIS-R: 
Manual, 1981), and the Word Fluency Test (Benton et al., 1981) at 
ARIC visits 2, 4, and 5, and an additional cognitive testing battery 
(including the Mini-Mental State Examination [MMSE] (Tombaugh and 
McIntyre, 1992), the Clinical Dementia Rating [CDR] scale (Morris, 
1993), and the Functional Activities Questionnaire [FAQ]Pfeffer et al. 
(1982)) at visit 5. Mild cognitive impairment was adjudicated if a 
participant had low scores in any one cognitive domain, evidence of 
cognitive decline, an FAQ score less than 6, and a CDR score between 0.5 
and 3 (Knopman et al., 2016). Diagnoses were confirmed by expert 
consensus. We identified those with at least one APOE e4 allele via 
genotyping. 

We used measures from visit 4 (1996–1998), the closest visit pre
ceding our air pollution exposure period of interest, to characterize 
potential confounders. Smoking and alcohol consumption were self- 
reported and categorized as current, former, or never. Body mass 
index (BMI) was calculated as participants’ weight in kilograms divided 
by their squared height in meters. Hypertension, diabetes, and coronary 
heart disease status were defined using medication data, hospital sur
veillance, measured blood pressure or blood glucose levels (where 
applicable), and self-reported medical histories. Finally, we operation
alized neighborhood socioeconomic status (nSES) using census tract- 
level measures of log of median household income; log of median 
housing value; percent of households earning interest, dividends, or net 
rental income; proportion of adults with high school degrees; proportion 
of adults with college degrees; and proportion of adults in executive, 
managerial, or professional occupations (Roux et al., 2001). Z-scored 
versions of these variables were summed to produce a time-varying 
overall measure of nSES at participant addresses (Roux et al., 2001), 
from which we derived a 10-year average nSES for each participant 
(from 2002 to 2011). 

2e. Statistical Analyses 

We quantified characteristics of persons with and without elevated 
brain amyloid at visit 5. We assessed differences in continuous variables 
with Student’s t-tests and used chi-square tests for categorical variables. 
We also described distributions of 2002–2011 averages of each exposure 
and calculated partial correlations between each exposure, adjusting for 
study center. 

Multivariable-adjusted logistic regression models were used to 
quantify the association between 2002 and 2011 average air pollutant 
exposure and elevated amyloid deposition in 2012–2014. Associations 
were scaled to represent the effects of different exposure contrasts for 
each pollutant: 1 ug/m3 for PM2.5; 1 ppb for NO2, NOx, 24-hour O3, and 
8-hour O3; 100 ppb for CO; 0.1 ppb for sulfates, ammonium, nitrates, 
elemental carbon, and organic carbon; 10 ng/m3 for Fe; and 1 ng/m3 for 
Cu, Hg, Ni, Pb, V, and Zn. We ran unadjusted models (Model 1); models 
adjusted for age at PET scan, sex, education, race-center, and cognitive 
status (normal/MCI) at visit 5 (Model 2); and a fully adjusted model 
additionally adjusting for APOE e4 status (Model 3). 

Because APOE e4 allele status has been shown to modify the asso
ciation between air pollution and risk of dementia (Cacciottolo et al., 
2017) and cognitive status (Schikowski et al., 2015) in prior studies, we 
explored potential effect measure modification by including a multi
plicative interaction term (i.e., pollutant * APOE e4 allele status) in 
Model 3. We also explored interactions with race-center, cognitive sta
tus, and number of vascular risk factors (i.e., current smoking, hyper
tension, diabetes, BMI>=30, and total cholesterol >=200 mg/dL; N =
316 for analyses of effect measure modification by number of vascular 
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risk factors) (Gottesman et al., 2017). 
In sensitivity analyses, we explored the effect of further covariate 

adjustment on resulting odds ratios for amyloid positivity. Of our 
remaining covariates of potential interest, only nSES and BMI were 
associated with at least one exposure and the outcome, thus meeting the 
minimum criteria as potential confounders in our sample, and were 
adjusted for in Model 4 (Model 3 + neighborhood SES) and Model 5 
(Model 4 + BMI). For analyses of PM2.5 components, we further 
explored adjusting for total PM2.5 in Model 6 (Model 3 + total PM2.5); 
doing so changed the interpretation to the effect of a higher proportion 
of the component within total PM2.5 exposure on late-life amyloid 
burden as opposed to higher absolute concentrations of each 
component. 

As an additional sensitivity analysis, we explored whether using 
exposures generated from alternate air pollution estimation approaches 
impacted associations given evidence from epidemiologic literature that 
model choice may significantly impact associations with health out
comes (Klompmaker et al., 2021; Sellier et al., 2014; Yap et al., 2012). 
Briefly, we used two additional methods to estimate PM2.5: (i) a satellite- 
based approach incorporating output from a chemical transport model 
(CTM) and monitor data (Hammer et al., 2020; van Donkelaar et al., 
2019), and (ii) a regionalized universal kriging approach that uses 
partial least squares regression (PLSR)-resolved land use regression 
(LUR), temporal trend back-extrapolation, and spatial smoothing (Keller 
et al., 2015; Kirwa et al., 2021). We also used the regionalized universal 
kriging approach with LUR and PLSR to derive exposure estimates for 
NO2 and 24-hour O3. Finally, we used a national log-normal ordinary 
kriging model (Liao et al., 2006) for additional concentration estimates 
of NO2, NOx, and 24-hour O3. Because data from the national log-normal 
ordinary kriging model were not available for every participant address, 
we imputed missing values as estimated exposures from the nearest 
residential address with available data within 1 km. Those who lived 
farther than 1 km from a residence with available data were excluded 
from analyses using the national log-normal ordinary kriging model (N 
= 13). 

Further, we used inverse probability weights to better estimate what 
our results may look like had the ARIC-PET sample included participants 
with dementia. First, we obtained weights constructed by the ARIC 
cohort that account for the MRI study sampling strategy and study 
center-specific probability of participant refusal. Because inclusion in 
the PET sample further requires participants be free from dementia, we 
constructed another set of weights that, when applied to the PET sample, 
weighted it to better resemble the cognitive distribution of the MRI 
sample. A schematic for this approach is outlined in Supplemental 
Fig. 1. Using the combined MRI and cognitive distribution weights ac
counts for both the systematic sampling of the MRI study and the 
exclusion of participants with dementia in the PET study, and therefore 
better reflects the distribution of cognitive status in all ARIC visit 5 
participants. 

Finally, to confirm our results were not driven by our definition of 
amyloid positivity, we transformed global cortical SUVRs into centiloids 
following the equation derived by Navitsky et al for Avid VOIs (Navitsky 
et al., 2018). We estimated the association between each individual air 
pollutant and centiloids (treated continuously) adjusting for con
founders used in Model 2. All analyses were completed using SAS 9.4 
(Cary, NC) and RStudio version 1.4.1717. 

3. Results 

Characteristics of all eligible participants, those with elevated amy
loid burden (“amyloid positive”), and those without elevated amyloid 
burden (“amyloid negative”) are presented in Table 1. A significantly 
higher proportion of amyloid positive participants compared to amyloid 
negative participants were Black in MS, female, lived in areas of lower 
socioeconomic status, and had vascular risk factors. Amyloid positive 
participants were also more likely to have MCI and be APOE e4 carriers. 

Table 1 
Characteristics of eligible ARIC-Amyloid PET Study participants (N ¼ 318) 
a,b.   

Overall 
(N =
318) 

Amyloid 
Negative (N 
= 153) 

Amyloid 
Positive (N 
= 165) 

P-value 

Age in years at PET scan, 
mean (SD) 

78.0 
(5.3) 

77.3 (5.4) 78.7 (5.1) 0.03 

Female, N (%) 179 
(56.3%) 

76 (49.7%) 103 (62.4%) 0.02 

Race-center, N (%)    0.001 
Black in Jackson, MS 135 

(42.5%) 
49 (32.0%) 86 (52.1%) 

White in Forsyth County, 
NC 

63 
(19.8%) 

35 (22.9%) 28 (17.0%) 

White in Washington 
County, MD 

120 
(37.7%) 

69 (45.1%) 51 (30.9%) 

Education, N (%)    0.23 
Less than high school 51 

(16.0%) 
19 (12.4%) 32 (19.4%) 

High school or 
equivalent 

135 
(42.5%) 

69 (45.1%) 66 (40.0%) 

Greater than high school 132 
(41.5%) 

65 (42.5%) 67 (40.6%) 

Cognitive status at visit 
5, N (%)    

<0.001 

MCI 86 
(27.0%) 

27 (17.6%) 59 (35.8%) 

Cognitively normal 232 
(73.0%) 

126 (82.4%) 106 (64.2%) 

At least one APOE e4 
allele, N (%) 

97 
(30.5%) 

30 (19.6%) 67 (40.6%) <0.001 

2002–2011 average 
neighborhood SES z- 
score sum, mean (SD) 

− 1.6 
(5.2) 

− 0.6 (5.2) − 2.6 (5.1) <0.001 

BMI (kg/m2), mean (SD) 29.2 
(5.2) 

28.4 (4.8) 30.0 (5.5) 0.008 

Smoking status, N (%) c    0.93 
Current 32 

(10.1%) 
15 (9.9%) 17 (10.3%) 

Former 132 
(41.6%) 

62 (40.8%) 70 (42.4%) 

Never 153 
(48.3%) 

75 (49.3%) 78 (47.3%) 

Alcohol consumption, N 
(%) c    

0.43 

Current 143 
(45.1%) 

74 (48.7%) 69 (41.8%) 

Former 95 
(30.0%) 

44 (28.9%) 51 (30.9%) 

Never 79 
(24.9%) 

34 (22.4%) 45 (27.3%) 

Diabetes, N (%) c 39 
(12.3%) 

14 (9.3%) 25 (15.2%) 0.11 

Hypertension, N (%) 141 
(44.3%) 

60 (39.2%) 81 (49.1%) 0.08 

Coronary heart disease, 
N (%) c 

8 (2.6%) 4 (2.7%) 4 (2.5%) 0.90 

Number of vascular risk 
factors, N (%) c    

<0.001  

0 57 
(18.0%) 

35 (23.2%) 22 (13.3%) 

1 112 
(35.4%) 

63 (41.7%) 49 (29.7%) 

2+ 147 
(46.5%) 

53 (35.1%) 94 (57.0%) 

a. Time-varying covariates were measured at visit 4 (1996–1998) unless 
otherwise specified. 
b. P-values from student’s T-tests (for continuous variables) or chi-square tests 
(for categorical variables). 
c. 1 participant missing data on smoking status, 1 participant missing data on 
alcohol consumption, 2 participants missing data on diabetes, 7 participants 
missing data on coronary heart disease, 2 participants missing data on number of 
vascular risk factors. 
Abbreviations: BMI, body mass index; MCI, mild cognitive impairment; MD, 
Maryland; MS, Mississippi; NC, North Carolina; nSES, neighborhood socioeco
nomic status; PET, positron emission tomography; SD, standard deviation. 
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Distributions of air pollutants at participant residential addresses are 
presented in Fig. 1 and Supplemental Table 1, and partial correlations 
between pollutants are provided in Supplemental Fig. 2. Notably, 
elemental carbon and all airborne trace metals were highly correlated 
with each other (Pearson’s r ≥ 0.9). Additionally, over 98% of partici
pants were assigned to 1.33-km resolution exposures for all pollutants 
modeled using the primary estimation method. 

Although unadjusted associations suggested protective effects, 
higher air pollution exposures were not significantly associated with 
amyloid positivity in fully adjusted models (Fig. 2, Supplemental 
Table 2). Additional adjustment for nSES and BMI in Models 4 and 5 
(Supplemental Table 2) and adjusting for total PM2.5 in analyses 
considering PM2.5 components in Model 6 (Supplemental Table 3, 
Supplemental Fig. 3) did not materially change our results. 

We did not see support for effect measure modification of associa
tions between any pollutant and amyloid burden by APOE e4 allele 
status, cognitive status, or number of vascular risk factors (all p-values 
> 0.05). Race-center appeared to modify the association between 24- 
hour O3 and amyloid burden (p-value for interaction = 0.028); how
ever, given the number of models considered in our analyses, this is 
likely a chance finding. 

Results from sensitivity analyses were largely consistent with our 
main findings. Despite low to moderate correlation of PM2.5, NO2, NOx, 
and 24-hour O3 estimates across approaches (Supplemental Fig. 4), 
there was little support for the hypothesized associations between 
average ten-year exposures and brain amyloid positivity when using 
alternate air pollution estimation approaches. Of note, estimates using 
the national log-normal kriging model had wider confidence intervals 
(Fig. 3), reflecting smaller variability in air pollution estimates using this 
approach. Results were materially unchanged when we weighted par
ticipants to better reflect the cognitive status distribution of all ARIC 
participants at visit 5 (Fig. 4) and when global SUVRs were converted to 
centiloids (Supplemental Table 4). 

4. Discussion 

We did not find significant associations between 10-year exposure to 
criteria air pollutants, components of PM2.5, or airborne trace metals and 
late-life elevated amyloid deposition among older adults without de
mentia living in three US communities. 

This study contributes to the growing literature examining potential 
mechanisms underlying associations between air pollution and accel
erated cognitive decline or heightened dementia risk in observational 
studies (Weuve et al., 2021). To date, similar studies of long-term (i.e. 
greater than one-year) exposure to air pollution and human brain am
yloid burden measured in vivo have been inconsistent. Iaccarino and 
colleagues reported that elevated PM2.5 was associated with a 10% in
crease (95% CI: 5%, 15%) in odds of amyloid positivity among 18,178 
Medicare-eligible adults with MCI or dementia of uncertain etiology 
(Iaccarino et al., 2021). However, no significant association was found 
with 8-hour O3. Among a sample of 156 participants in Barcelona, 97% 
of whom reported a family history of AD, no effect was detected for 
PM2.5 (Alemany et al., 2021). However, higher NO2 exposure was 
associated with higher amyloid deposition only among the subset of 
participants who had decreased AB42/40 ratios measured in cerebro
spinal fluid. As our sample excludes those with dementia, and we lack 
cerebrospinal fluid measures, direct comparison of these studies to our 
findings is difficult. Finally, a study of 309 cognitively unimpaired in
dividuals in South Korea reported significantly higher odds of amyloid 
positivity among those in the highest tertile of 5-year exposure to par
ticulate matter (PM10), approximately 48 to 67 ug/m3 (Lee et al., 2020), 
which is high relative to levels found in most of the US and those 
experienced by the participants in our sample. 

There is some evidence to suggest that air pollution exposure may 
influence AD primarily in later stages of the disease process, which may 
help explain the observed heterogeneity across studies. A recent study 

conducted using data from the Swedish National Study on Aging and 
Care in Kungsholmen (SNAC-K) cohort found that the hazard ratio for 
air pollution exposure and progression to dementia among participants 
with cognitive impairment, no dementia (CIND) at baseline was stronger 
than that for incident CIND among unimpaired participants, suggesting 
air pollution may exert stronger effects later in the disease process (Wu 
et al., 2022). If the effects of air pollution on dementia and its patho
logical processes are modified by clinical progression, this could explain 
why our findings do not support the significant findings of prior studies. 
The study by Alemany et al. reported that NO2 exposure was associated 
with amyloid-PET positivity only in those with evidence of AD pathol
ogy in cerebrospinal fluid (Alemany et al., 2021), and the study by 
Iaccarino et al. (Iaccarino et al., 2021) of Medicare beneficiaries 
included only those who had either MCI or dementia, suggesting the 
association may be limited to those who are farther along the disease 
pathway. In contrast, our sample was comprised of persons without 
dementia, 73% of whom had normal cognition. 

Additionally, there is some evidence to suggest that the relationship 
between air pollution exposures and AD is nonlinear. This may also 
contribute to heterogeneity in findings across studies. For example, in
vestigators reported nonlinear relationships between both PM2.5 and 
PM10 with incident CIND in the SNAC-K cohort (Wu et al., 2022). This is 
echoed by the pattern of findings linking particulate matter to markers 
of AD pathology. For example, a study conducted among community- 
dwelling residents around Seattle that reported 10-year mean PM2.5 
levels of 8.2 ug/m3 (Shaffer et al., 2021Preprint:1–13.) found no asso
ciation between long-term PM2.5 exposure and three measures of AD 
pathology at autopsy (Shaffer et al., 2021Preprint:1–13.), mirroring our 
own US-based findings. On the other hand, studies on AD pathology 
conducted in Asia, where air pollution levels tend to be much higher, 
reported significant associations linking PM2.5 with AB42/40 ratios in 
cerebrospinal fluid (Ma et al., 2022) and linking PM10 exposure with 
amyloid-PET positivity (Lee et al., 2020). If the effect of air pollution 
exposures on AD risk is most pronounced at higher levels of exposure, 
this could help explain the observed pattern of findings. 

We did not find evidence of effect measure modification by APOE e4 
status. This is consistent with previous epidemiologic studies of air 
pollution and brain amyloid burden in humans (Alemany et al., 2021; 
Lee et al., 2020). However, this contradicts findings in related work on 
the effect of air pollution on brain amyloid accumulation in animal and 
ecologic studies. For example, in an experiment conducted with mice, 
APOE e4 carriers exposed to particulate matter had higher amyloid 
deposition compared to unexposed APOE e4 carriers, while no differ
ence was detected between exposed and unexposed APOE e3 carriers 
(Cacciottolo et al., 2017). Similarly, in young adults and children living 
in Mexico City exposed to very high levels of air pollution, those with at 
least one APOE e4 allele had greater AB42 accumulation compared to 
APOE e3 carriers (Calderón-Garcidueñas et al., 2008). As there are also 
epidemiologic studies suggesting stronger associations between air 
pollution and cognitive change among APOE e4 carriers (Cacciottolo 
et al., 2017; Schikowski et al., 2015; Kulick et al., 2020), it may be worth 
examining whether APOE e4 modifies air pollution’s effect on alternate 
pathological pathways known to increase risk of accelerated cognitive 
decline and dementia, or whether APOE e4 only modifies the effect of air 
pollution on amyloid accumulation at high levels of exposure. 

Our study has several important strengths. We extended the scope of 
prior work to consider associations with multiple criteria air pollutants, 
components of PM2.5, and airborne trace metals. Full address histories 
were available, limiting the potential for exposure misclassification due 
to residential moves and allowing the use of a 10-year average exposure 
window that represents an etiologically relevant exposure window 
based on our current understanding of AD pathogenesis. We considered 
the impact of using alternate modeling approaches to estimate air 
pollution exposures, which confirmed that our findings were not specific 
to our choice of air pollution estimation approach. We also acknowledge 
that this study has limitations. Like prior studies, we do not account for 
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Fig. 1. Maps of 10-year average PM2.5 and NO2 exposure distributions within the 1.33 km estimation area containing each study site. Dots represent 
approximate participant locations for participants who did not move within the 10 year averaging period and for whom 1.33 km exposure resolution data were 
available for all 10 years within the averaging period. Abbreviations: m, meter; MD, Maryland; MS, Mississippi; NC, North Carolina; NO2, nitrogen dioxide; PM2.5, 
fine particulate matter; ppb, parts per billion; ug, micrograms. 
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Fig. 2. Associations of 10-year exposure to criteria air pollutants, PM2.5 components, and airborne trace metals with elevated late-life amyloid burden 
among ARIC-PET participants (N ¼ 318). Adjusted models include age at PET scan, sex, race-center, education, cognitive status, and APOE e4 allele status (Model 
3). Abbreviations: ARIC, Atherosclerosis Risk in Communities; CI, confidence interval; CO, carbon monoxide; Cu, copper; Fe, iron; Hg, mercury; m, meter; ng, 
nanograms; Ni, nickel; NOx, oxides of nitrogen; NO2, nitrogen dioxide; O3, ozone; Pb, lead; PET, positron emission tomography; PM2.5, fine particulate matter; ppb, 
parts per billion; ug, micrograms; V, vanadium; Zn, zinc. 

Fig. 3. Associations between PM2.5, NO2, NOx and 24-hour O3 and elevated late-life amyloid burden using alternate air pollution modeling approaches. 
Models presented are adjusted for age at PET scan, sex, race-center, education, cognitive status, and APOE e4 allele status (Model 3). Abbreviations: CI, confidence 
interval; CMAQ, Community Multiscale Air Quality; CTM, chemical transport model; EDGAR, Emissions Database for Global Atmospheric Research; LUR, land use 
regression; m, meter; NEI, National Emissions Inventory; NO2, nitrogen dioxide; NOx, oxides of nitrogen; O3, ozone; PLSR, partial least squares regression; PM2.5, fine 
particulate matter; ppb, parts per billion; ug, micrograms. 
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daily mobility when estimating participant exposures; as regulation 
targets ambient pollutant concentrations, our results remain relevant to 
health policy considerations. Our limited sample size may have reduced 
our ability to detect significant effects; however, our sample size was 
similar to that of other PET imaging studies that reported significant 
associations (Alemany et al., 2021; Lee et al., 2020). Though we used 
additional air pollution estimation models for four air pollutants, 
alternate approaches were unavailable for components of PM2.5 or 
airborne trace metals, and we cannot determine which air pollution 
method used in this study has the highest accuracy or reliability. As 
adjusting for study center effectively modifies the interpretation of re
sults to looking at within-site exposure contrasts, we assume our 
approach here accurately captures local contrasts; however, we are 
unable to compare these findings with those using other approaches that 
may better capture small-scale variation. Amyloid positivity prevalence 
estimates were slightly different in our study compared to those pub
lished in a recent meta-analysis (Jansen et al., 2015), possibly because 
Black individuals, who make up 42.5% of our study population, have 
higher calculated global SUVRs across categories of cognitive status 
(Gottesman et al., 2016). Finally, our sample excluded individuals with 
dementia, precluding investigation of associations in this potentially 
sensitive group. Though we conducted sensitivity analyses upweighting 
the small number of those who transition to dementia by visit 6 to 
approximate a sample including those at all disease stages, these ana
lyses are unlikely to fully reflect the effect that would have been found in 
a sample that included participants with dementia. 

In conclusion, we did not find evidence of associations between 
criteria air pollutants, components of PM2.5, and airborne trace metals 

and late-life brain amyloid deposition among individuals without de
mentia recruited from three sites in the US. While this suggests that air 
pollution may impact cognition and dementia independent of amyloid 
accumulation, whether air pollution influences AD pathogenesis later in 
the disease course or at higher exposure levels deserves further 
consideration. 
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