313 research outputs found

    How Sensitive is the CMB to a Single Lens?

    Full text link
    We study the imprints of a single lens, that breaks statistical isotropy, on the CMB and calculate the signal to noise ratio (S/N) for its detection. We emphasize the role of non-Gaussianities induced by LCDM weak lensing in this calculation and show that typically the S/N is much smaller than expected. In particular we find that the hypothesis that a void (texture) is responsible for the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB.Comment: Accepted for publication in JCAP, 24 pages, 5 figure

    Natural Inflation From Fermion Loops

    Full text link
    ``Natural'' inflationary theories are a class of models in which inflation is driven by a pseudo-Nambu-Goldstone boson. In this paper we consider two models, one old and one new, in which the potential for inflation is generated by loop effects from a fermion sector which explicitly breaks a global U(1)U(1) symmetry. In both models, we retrieve the ``standard'' natural inflation potential, V(θ)=Λ4[1+cos(θ/μ)]V\left(\theta\right) = \Lambda^4\left[1 + \cos\left(\theta / \mu\right)\right], as a limiting case of the exact one-loop potential, but we carry out a general analysis of the models including the limiting case. Constraints from the COBE DMR observation and from theoretical consistency are used to limit the parameters of the models, and successful inflation occurs without the necessity of fine-tuning the parameters.Comment: (Revised) 15 pages, LaTeX (revTeX), 8 figures in uuencoded PostScript format. Version accepted for publication in Phys. Rev. D 15. Corrected definition of power spectrum and added three reference

    Entanglement entropy in quantum spin chains with finite range interaction

    Full text link
    We study the entropy of entanglement of the ground state in a wide family of one-dimensional quantum spin chains whose interaction is of finite range and translation invariant. Such systems can be thought of as generalizations of the XY model. The chain is divided in two parts: one containing the first consecutive L spins; the second the remaining ones. In this setting the entropy of entanglement is the von Neumann entropy of either part. At the core of our computation is the explicit evaluation of the leading order term as L tends to infinity of the determinant of a block-Toeplitz matrix whose symbol belongs to a general class of 2 x 2 matrix functions. The asymptotics of such determinant is computed in terms of multi-dimensional theta-functions associated to a hyperelliptic curve of genus g >= 1, which enter into the solution of a Riemann-Hilbert problem. Phase transitions for thes systems are characterized by the branch points of the hyperelliptic curve approaching the unit circle. In these circumstances the entropy diverges logarithmically. We also recover, as particular cases, the formulae for the entropy discovered by Jin and Korepin (2004) for the XX model and Its, Jin and Korepin (2005,2006) for the XY model.Comment: 75 pages, 10 figures. Revised version with minor correction

    Second-order corrections to slow-roll inflation in the brane cosmology

    Full text link
    We calculate the power spectrum, spectral index, and running spectral index for the RS-II brane inflation in the high-energy regime using the slow-roll expansion. There exist several modifications. As an example, we take the power-law inflation by choosing an inverse power-law potential. When comparing these with those arisen in the standard inflation, we find that the power spectrum is enhanced and the spectral index is suppressed, while the running spectral index becomes zero as in the standard inflation. However, since second-order corrections are rather small, these could not play a role of distinguishing between standard and brane inflations.Comment: 6 page

    Constraining slow-roll inflation with WMAP and 2dF

    Get PDF
    We constrain slow-roll inflationary models using the recent WMAP data combined with data from the VSA, CBI, ACBAR and 2dF experiments. We find the slow-roll parameters to be 0<ϵ1<0.0320 < \epsilon_1 < 0.032 and ϵ2+5.0ϵ1=0.036±0.025\epsilon_2 + 5.0 \epsilon_1 = 0.036 \pm 0.025. For inflation models VϕαV \propto \phi^{\alpha} we find that α<3.9,4.3\alpha< 3.9, 4.3 at the 2σ\sigma and 3σ3\sigma levels, indicating that the λϕ4\lambda\phi^4 model is under very strong pressure from observations. We define a convergence criterion to judge the necessity of introducing further power spectrum parameters such as the spectral index and running of the spectral index. This criterion is typically violated by models with large negative running that fit the data, indicating that the running cannot be reliably measured with present data.Comment: 8 pages RevTeX4 file with six figures incorporate

    Scalar cosmological perturbations from inflationary black holes

    Full text link
    We study the correction to the scale invariant power spectrum of a scalar field on de Sitter space from small black holes that formed during a pre-inflationary matter dominated era. The formation probability of such black holes is estimated from primordial Gaussian density fluctuations. We determine the correction to the spectrum by first deriving the Keldysh propagator for a massless scalar field on Schwarzschild-de Sitter space. Our results suggest that the effect is strong enough to be tested -- and possibly even ruled out -- by observations.Comment: 41 pages, 11 figures, published versio

    Diffusive Charge Transport in Graphene on SiO2

    Full text link
    We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates [1]; increased dielectric screening reduces scattering from charged impurities, but increases scattering from short-range scatterers [2]. We evaluate the effects of the corrugations (ripples) of graphene on SiO2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering [3, 4]. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity linear in temperature and independent of carrier density [5]; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity [5]. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime.Comment: 28 pages, 7 figures, submitted to Graphene Week proceeding

    Second-order corrections to noncommutative spacetime inflation

    Full text link
    We investigate how the uncertainty of noncommutative spacetime affects on inflation. For this purpose, the noncommutative parameter μ0\mu_0 is taken to be a zeroth order slow-roll parameter. We calculate the noncommutative power spectrum up to second order using the slow-roll expansion. We find corrections arisen from a change of the pivot scale and the presence of a variable noncommutative parameter, when comparing with the commutative power spectrum. The power-law inflation is chosen to obtain explicit forms for the power spectrum, spectral index, and running spectral index. In cases of the power spectrum and spectral index, the noncommutative effect of higher-order corrections compensates for a loss of higher-order corrections in the commutative case. However, for the running spectral index, all higher-order corrections to the commutative case always provide negative spectral indexes, which could explain the recent WMAP data.Comment: 15 pages, no figure, version published in PR

    Inflation, cold dark matter, and the central density problem

    Full text link
    A problem with high central densities in dark halos has arisen in the context of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is often justified by appealing to the inflation scenario, inflationary models with mild deviations from scale-invariance are not uncommon and models with significant running of the spectral index are plausible. Even mild deviations from scale-invariance can be important because halo collapse times and densities depend on the relative amount of small-scale power. We choose several popular models of inflation and work out the ramifications for galaxy central densities. For each model, we calculate its COBE-normalized power spectrum and deduce the implied halo densities using a semi-analytic method calibrated against N-body simulations. We compare our predictions to a sample of dark matter-dominated galaxies using a non-parametric measure of the density. While standard n=1, LCDM halos are overdense by a factor of 6, several of our example inflation+CDM models predict halo densities well within the range preferred by observations. We also show how the presence of massive (0.5 eV) neutrinos may help to alleviate the central density problem even with n=1. We conclude that galaxy central densities may not be as problematic for the CDM paradigm as is sometimes assumed: rather than telling us something about the nature of the dark matter, galaxy rotation curves may be telling us something about inflation and/or neutrinos. An important test of this idea will be an eventual consensus on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our successful models have values of sigma_8 approximately 0.75, which is within the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1) are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's Comments, error in Eq. (18) corrected, references updated and corrected, conclusions unchanged. Version accepted for publication in Phys. Rev. D, scheduled for 15 August 200

    An eddy-correlation measurement of NO2 flux to vegetation and comparison to O3 flux

    Full text link
    Eddy-correlation measurements with a newly developed fast-response NOx sensor indicate that the deposition velocity at a height of about 6m above a soybean field has a maximum value near 0.6cms-1 for NOx and is usually about 2/3 ofthat found for ozone. In these studies, over 90% of the NOx is NO2. The corresponding minimum surface resistance for NOx calculated as the quantity remaining after atmospheric resistances are subtracted is about 1.3 s cm-1, which is larger than expected on the basis of leaf stomatal resistance alone. Emission of NO from sites in the plant canopy and soil where NO2 is deposited and reduced to NO or release of NOx as a result of biological activity may have lessened the downward fluxes of NOx as measured. During windy conditions at night, surface resistances are found to have values of about 15scm-1 for NOx (again, greater than 90% NO2) and 1.8scm-1 for O3, corresponding to deposition velocities of 0.05cms-1 and 0.3cms-1, respectively.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24138/1/0000395.pd
    corecore