1,051 research outputs found

    Educational interventions for the management of cancer-related fatigue in adults

    Get PDF
    Background: Cancer-related fatigue is reported as the most common and distressing symptom experienced by patients with cancer. It can exacerbate the experience of other symptoms, negatively affect mood, interfere with the ability to carry out everyday activities, and negatively impact on quality of life. Educational interventions may help people to manage this fatigue or to cope with this symptom, and reduce its overall burden. Despite the importance of education for managing cancer-related fatigue there are currently no systematic reviews examining this approach. Objectives: To determine the effectiveness of educational interventions for managing cancer-related fatigue in adults. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), and MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, OTseeker and PEDro up to 1st November 2016. We also searched trials registries. Selection criteria: We included randomised controlled trials (RCTs) of educational interventions focused on cancer-related fatigue where fatigue was a primary outcome. Studies must have aimed to evaluate the effect of educational interventions designed specifically to manage cancer-related fatigue, or to evaluate educational interventions targeting a constellation of physical symptoms or quality of life where fatigue was the primary focus. The studies could have compared educational interventions with no intervention or wait list controls, usual care or attention controls, or an alternative intervention for cancer-related fatigue in adults with any type of cancer. Data collection and analysis: Two review authors independently screened studies for inclusion and extracted data. We resolved differences in opinion by discussion. Trial authors were contacted for additional information. A third independent person checked the data extraction. The main outcome considered in this review was cancer-related fatigue. We assessed the evidence using GRADE and created a 'Summary of Findings' table. Main results: We included 14 RCTs with 2213 participants across different cancer diagnoses. Four studies used only 'information-giving' educational strategies, whereas the remainder used mainly information-giving strategies coupled with some problem-solving, reinforcement, or support techniques. Interventions differed in delivery including: mode of delivery (face to face, web-based, audiotape, telephone); group or individual interventions; number of sessions provided (ranging from 2 to 12 sessions); and timing of intervention in relation to completion of cancer treatment (during or after completion). Most trials compared educational interventions to usual care and meta-analyses compared educational interventions to usual care or attention controls. Methodological issues that increased the risk of bias were evident including lack of blinding of outcome assessors, unclear allocation concealment in over half of the studies, and generally small sample sizes. Using the GRADE approach, we rated the quality of evidence as very low to moderate, downgraded mainly due to high risk of bias, unexplained heterogeneity, and imprecision. There was moderate quality evidence of a small reduction in fatigue intensity from a meta-analyses of eight studies (1524 participants; standardised mean difference (SMD) -0.28, 95% confidence interval (CI) -0.52 to -0.04) comparing educational interventions with usual care or attention control. We found low quality evidence from twelve studies (1711 participants) that educational interventions had a small effect on general/overall fatigue (SMD -0.27, 95% CI -0.51 to -0.04) compared to usual care or attention control. There was low quality evidence from three studies (622 participants) of a moderate size effect of educational interventions for reducing fatigue distress (SMD -0.57, 95% CI -1.09 to -0.05) compared to usual care, and this could be considered clinically significant. Pooled data from four studies (439 participants) found a small reduction in fatigue interference with daily life (SMD -0.35, 95% CI -0.54 to -0.16; moderate quality evidence). No clear effects on fatigue were found related to type of cancer treatment or timing of intervention in relation to completion of cancer treatment, and there were insufficient data available to determine the effect of educational interventions on fatigue by stage of disease, tumour type or group versus individual intervention. Three studies (571 participants) provided low quality evidence for a reduction in anxiety in favour of the intervention group (mean difference (MD) -1.47, 95% CI -2.76 to -0.18) which, for some, would be considered clinically significant. Two additional studies not included in the meta-analysis also reported statistically significant improvements in anxiety in favour of the educational intervention, whereas a third study did not. Compared with usual care or attention control, educational interventions showed no significant reduction in depressive symptoms (four studies, 881 participants, SMD -0.12, 95% CI -0.47 to 0.23; very low quality evidence). Three additional trials not included in the meta-analysis found no between-group differences in the symptoms of depression. No between-group difference was evident in the capacity for activities of daily living or physical function when comparing educational interventions with usual care (4 studies, 773 participants, SMD 0.33, 95% CI -0.10 to 0.75) and the quality of evidence was low. Pooled evidence of low quality from two of three studies examining the effect of educational interventions compared to usual care found an improvement in global quality of life on a 0-100 scale (MD 11.47, 95% CI 1.29 to 21.65), which would be considered clinically significant for some. No adverse events were reported in any of the studies. Authors' conclusions: Educational interventions may have a small effect on reducing fatigue intensity, fatigue's interference with daily life, and general fatigue, and could have a moderate effect on reducing fatigue distress. Educational interventions focused on fatigue may also help reduce anxiety and improve global quality of life, but it is unclear what effect they might have on capacity for activities of daily living or depressive symptoms. Additional studies undertaken in the future are likely to impact on our confidence in the conclusions. The incorporation of education for the management of fatigue as part of routine care appears reasonable. However, given the complex nature of this symptom, educational interventions on their own are unlikely to optimally reduce fatigue or help people manage its impact, and should be considered in conjunction with other interventions. Just how educational interventions are best delivered, and their content and timing to maximise outcomes, are issues that require further research

    Moisture transport and drying shrinkage properties of steel-fibre-reinforced-concrete.

    Get PDF
    Drying shrinkage has a serious impact on the structural and durability performance of concrete pavements. Shrinkage strain development and distress can only be fully understood by knowing the moisture transport and free shrinkage properties of concrete. This paper uses experiments and FE inverse analysis to determine these properties for conventional concrete (CC) and RCC reinforced with recycled-steel-fibres from tyres. Moisture diffusivity versus moisture content and a relationship between free shrinkage and moisture loss are derived. These values can be used to predict shrinkage strains and stresses in road pavements and other ground restrained slabs

    Finite element-based non-linear dynamic soil-structure interaction.

    Get PDF
    The modelling of unbounded domains is an important consideration in many engineering problems, for example in fluid flow, electro-magnetics, acoustics and solid mechanics. This thesis focuses on the problem of modelling elastic solids to infinity, with the specific purpose of modelling dynamic soil-structure interaction (DSSI). However, the reader should be aware that the techniques presented may also be adapted to address those other physical phenomena. The need for techniques to model the soil domain to infinity and a qualitative introduction into the problems associated with dynamic soil-structure interaction are outlined in chapter 1. This is done to illustrate why such an abstract mathematical concept of modelling infinite domains has an important role to play within the design process of large, safety critical, civil engineering structures. A brief review of a number of alternative ways of addressing this problem is given in chapter 2. Their relative strengths and weaknesses along with the typical applicability of the techniques is discussed. A consequence of this review is the identification of a very promising rigorous approach [59] which is singled-out for further study. A detailed explanation of this (Consistent Infinitesimal Finite Element Cell Method, CIFECM) method is then given in chapter 3. Attention is restricted to the use of the technique for solving the 3-D vector wave equation in the time domain. The features of the non-linear dynamic finite element code, into which the CIFECM has been incorporated, is highlighted in chapter 4. The non-linear (microplane) material model for quasi-brittle materials is described along with the solution strategy employed. It should be mentioned that the soil is treated within this thesis as drained linear elastic medium. The method of coupling the CIFECM into the dynamic equation of force equilibrium for both directly applied and transmitted loading regimes is detailed. Application of the code follows in chapter 5; firstly by introducing the simplest test problem of one finite element coupled with one CIFECM element to model a surface foundation. Comparisons are made between the dynamic displacements resulting from the method and standard FE solutions obtained from the use of extended meshes and fixed boundary conditions, along with a study of the influence input variables. Following these examples a larger (more realistic) engineering problem is tacked involving the simulation of an aircraft impact on a reinforced concrete nuclear containment vessel. This represents the first use of the method in a 3-D nonlinear structural analysis problem. The results illustrate the practical implications of including DSSI in the analysis. III In chapter 6, a series of general observations on the method are made with an assessment of its value together with a discussion on its wider application to other engineering fields. Possible future developments to make the method more computationally efficient are finally suggested

    ピエール・ロシエ: 東アジアにおける写真の開拓者

    Get PDF
    International Conference on Research of Old Japanese Photographs "International Exchange Depicted in Old Photographs": November 16th-17th 2007, Nagasaki University (2F Multipurpose Hall, General Education and Reserch Building)古写真研究国際カンファレンス「イメージのなかの国際交流」: 2007年11月16-17日, 長崎大学(総合教育研究棟2階多目的ホール

    Peer Sexual Harassment and Peer Violence Among Adolescents in Johanesburg and Chicago

    Get PDF
    In this comparison study of peer sexual harassment and peer violence in South African and US schools, the roles of gender and power in the experience, perpetration, and reaction to peer sexual harassment, physical violence and sexual violence are described for 208 South African students and 224 US students age 16-18

    Classical and quantum communication without a shared reference frame

    Get PDF
    We show that communication without a shared reference frame is possible using entangled states. Both classical and quantum information can be communicated with perfect fidelity without a shared reference frame at a rate that asymptotically approaches one classical bit or one encoded qubit per transmitted qubit. We present an optical scheme to communicate classical bits without a shared reference frame using entangled photon pairs and linear optical Bell state measurements.Comment: 4 pages, published versio

    The effect of shrinkage cracks on the load bearing capacity of steel-fibre-reinforced roller-compacted-concrete pavements.

    Get PDF
    This paper demonstrates the effect of shrinkage cracks on the static load bearing capacity and on the fatigue performance of RCC pavements reinforced with steel fibres recycled from post-consumer tyres, with the aid of a case study. A numerical method is adopted using material properties (moisture transport, free shrinkage, mechanical and fatigue) derived from experiments. It is shown that surface micro-cracks initially develop predominantly due to differential shrinkage (curling). These micro-cracks penetrate down to approximately a quarter of the slab thickness and it is shown that they reduce the ultimate load bearing and fatigue capacity of the pavement by up to 50%. Even though shrinkage does not initially induce visible cracks, it significantly intensifies the crack opening due to traffic load by up to 500% for a crack width of 0.5 mm. For the case studied herein, to assure the long-term performance of the pavement the allowable stress ratio should be reduced by half, to account for the effect of shrinkage distress. This study is useful because for the first time the mechanical characteristics are coupled with the moisture transport mechanism, as well as the shrinkage and fatigue characteristics. This methodology can be used for other similar materials and geometries and can lead to general conclusions regarding the importance of shrinkage distress on the design of pavements

    Comparing Observed Stellar Kinematics and Surface Densities in a Low-latitude Bulge Field to Galactic Population Synthesis Models

    Get PDF
    We present an analysis of Galactic bulge stars from Hubble Space Telescope Wide Field Camera 3 observations of the Stanek window (l, b = [0.25,-2.15]) from two epochs approximately two years apart. This data set is adjacent to the provisional Wide-field Infrared Survey Telescope (WFIRST) microlensing field. Proper motions are measured for approximately 115,000 stars down to 28th mag in V band and 25th mag in I band, with accuracies of 0.5 mas yr-1 (20 km s-1) at I ≈ 21. A cut on the longitudinal proper motion μ l allows us to separate disk and bulge populations and produce bulge-only star counts that are corrected for photometric completeness and efficiency of the proper-motion cut. The kinematic dispersions and surface density in the field are compared to the nearby SWEEPS sight line, finding a marginally larger-than-expected gradient in stellar density. The observed bulge star counts and kinematics are further compared to the Besançon, Galaxia, and GalMod Galactic population synthesis models. We find that most of the models underpredict low-mass bulge stars by ∼33% below the main-sequence turnoff, and upwards of ∼70% at redder J and H wavebands. While considering inaccuracies in the Galactic models, we give implications for the exoplanet yield from the WFIRST microlensing mission

    Confirmation of the Planetary Microlensing Signal and Star and Planet Mass Determinations for Event OGLE-2005-BLG-169

    Get PDF
    We present Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations of the source and lens stars for planetary microlensing event OGLE-2005-BLG-169, which confirm the relative proper motion prediction due to the planetary light curve signal observed for this event. This (and the companion Keck result) provide the first confirmation of a planetary microlensing signal, for which the deviation was only 2%. The follow-up observations determine the flux of the planetary host star in multiple passbands and remove light curve model ambiguity caused by sparse sampling of part of the light curve. This leads to a precise determination of the properties of the OGLE-2005-BLG-169Lb planetary system. Combining the constraints from the microlensing light curve with the photometry and astrometry of the HST/WFC3 data, we find star and planet masses of M_* = 0.69+- 0.02 M_solar and m_p = 14.1 +- 0.9 M_earth. The planetary microlens system is located toward the Galactic bulge at a distance of D_L = 4.1 +- 0.4 kpc, and the projected star-planet separation is a_perp = 3.5 +- 0.3 AU, corresponding to a semi-major axis of a = 4.0 (+2.2 -0.6) AU.Comment: 21 pages, including 5 figures, published in Ap
    corecore