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Abstract 

Drying shrinkage has a serious impact on the structural and durability performance of 

concrete pavements. Shrinkage strain development and distress can only be fully understood 

by knowing the moisture transport and free shrinkage properties of concrete. This paper uses 

experiments and FE inverse analysis to determine these properties for conventional concrete 

(CC) and RCC reinforced with recycled-steel-fibres from tyres. Moisture diffusivity versus 

moisture content and a relationship between free shrinkage and moisture loss are derived. 

These values can be used to predict shrinkage strains and stresses in road pavements and 

other ground restrained slabs.   

Keywords: Drying Shrinkage; Moisture Transport; Recycled Fiber; SFRC; RCC; Pavement. 

1
1 Introduction 

In studying drying shrinkage, it is important to understand and quantify moisture movement 

in concrete during drying [1, 2, 3]. When concrete dries, the pore water moves towards the 

surface through the pore network and this results in variable moisture content in space and 

time. Moisture transport in concrete is more complex than in other porous media, as it has a 

wide variety of pore structures and the pore structures themselves change with time [4]. 

Drying shrinkage is critical for concrete pavements due to their large surface area. In 

particular, it significantly affects the performance and life time of concrete roads [5]. It has 

                                                 
CC: Conventional concrete 
FE: Finite element  

RCC: Roller-compacted-concrete 
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SFRC: Steel-fibre-reinforced-concrete 

SFR-CC: Steel-fibre-reinforced conventional-concrete 
SFR-RCC: Steel-fibre-reinforced roller-compacted-concrete 

 

mailto:n.jafarifar@sheffield.ac.uk1


 2 

been demonstrated numerically by the authors [6] that shrinkage induced internal strains and 

cracking can reduce the effective design stress used in pavements by up to 50%. For jointless 

SFRC pavements, shrinkage is the main limiting factor that determines the size of the slab. 

The same applies to RCC which can be used as an alternative to asphalt roads, or SFR-RCC 

in which the roller-compaction construction technique is used for placing SFRC. Early 

shrinkage behaviour of RCC is reported to be quite different to that of CC [7]. The few 

published investigations report that drying shrinkage of RCC is relatively low compared to 

CC [8, 9]. This is attributed to its lower moisture content or lower paste content. Whilst less 

paste in RCC can help to reduce the volumetric changes induced by drying, more voids and 

pores due to the nature of RCC may also change the moisture transport and shrinkage 

properties. Fibres can also change the pore structure of the concrete and affect the moisture 

transport and drying shrinkage [10]. Published research work on RCC and SFR-RCC does 

not deal with moisture transport and shrinkage properties.  

Using fibres in concrete leads to increased strain capacity and energy absorption by 

controlling crack propagation. Many different types of fibres have been used in concrete, but 

steel fibre is the most common. Steel fibres are produced in different shapes and lengths. The 

ability of fibres to bond with the concrete depends on the aspect ratio of the fibres and the 

surface characteristics. Thinner steel fibres could bridge microcracks more effectively and 

influence positively the early-age shrinkage of concrete. Such fibres can be obtained from 

recycling post-consumer tyres and can contribute to making SFRC more economical and 

environmentally friendly [11]. Recycled-tyre-steel-fibres (RTSF) have been developed at the 

University of Sheffield and examined extensively during the EU collaborative research 

project, Ecolanes [6, 12, 13, 14, 15, 16]. The work reported in this paper was part of 

Ecolanes and contributed to the development of numerical models for the analysis of road 

pavements. The objective of this work was to determine the moisture transport and shrinkage 

properties of CC and RCC reinforced with a practical content of steel fibres recycled from 

post-consumer tyres (2.5 % by weight) for FE modelling and comparison and design 

purposes. The material properties which are directly involved in the drying procedure of 

concrete are moisture diffusivity, convective moisture transport coefficient (also called film 

factor or surface factor) and hygral contraction coefficient (also called shrinkage coefficient) 

[17, 18]. These properties cannot be determined from the simple ring tests and in this paper 

special experimental procedures are adopted and modified to determine them. The approach 

followed in this paper is based on a combination of experimental studies and inverse analysis 

techniques. During the inverse analysis (or back-calculation), the properties are changed in a 

FE model so as to achieve iteratively the same moisture profiles or shrinkage history as 

obtained from experiments. 
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The paper begins by reviewing the factors involved in moisture transport and drying 

shrinkage of concrete. The moisture measurement methods are then evaluated to plan the 

experimental programme. The experimental procedures are presented followed by numerical 

inverse analysis and results.  

2     Factors involved in moisture transport and drying shrinkage of concrete 

In porous media, moisture can flow partly as liquid in capillaries and partly as vapour. In 

soil, the water movement happens distinguishably with both mechanisms (bulk water and 

vapour flux). Bulk water flux is controlled by pore water suction and elevation potential 

(capillary action). Vapor flux is governed by vapor diffusion in unsaturated pore space [1]. 

In concrete, when pore relative humidity is in the range of 15 to 95%, moisture movement in 

the form of vapour flux is dominant [19]. Therefore, the flow of moisture in concrete 

subjected to drying is in general assumed to obey the diffusion principles [1, 2, 3, 17, 19, 20, 

21, 22, 23, 24], especially when the moisture content decreases below 70 to 80% of initial 

saturation [25]. 

The first application of diffusion principles in a study of moisture distribution in concrete 

was reported in 1937 by Carlson [20]. Pickett [21] in 1946 revealed that the diffusion 

equation describing moisture movement in concrete can be equivalent to the equation of heat 

conduction.  However, the order of magnitude of the corresponding coefficients for diffusion 

of heat and diffusion of moisture are entirely different. Using this approach, only one 

material property, diffusivity, is involved in characterising the moisture movement within 

concrete, which makes it very convenient for analysis. 

2.1   Diffusion coefficient 

Assuming that the diffusion theory applies, the transport of moisture in concrete is governed 

by Fick’s second law [17, 23], details of which are given in Appendix A. 

To determine the moisture diffusivity, KC, as a material property, moisture measurements 

should be taken from drying specimens as a function of time and depth. Based on 

experimental moisture profiles, the diffusivity equation can be solved numerically or 

analytically to obtain the relevant moisture diffusivity. Different forms of analytically or 

empirically estimated closed-form functions defining the dependency of KC on the moisture 

content, C, have been introduced in the literature [2, 3, 5, 10, 18, 22, 26]. 
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In an approach proposed by Sakata [2] and adopted by others [1, 23, 24, 26], by assuming 

one-dimensional moisture transport the diffusion equation can be solved (Eq. 1) using 

Boltzman’s transformation, τ(x , t) = x / t . 

KC ]C=C1 = (-1/2 1
C1

 τ. dC) / (dC/dt ]C=C1)  Eq. 1 

Initial condition: C = 1  for x > 0 , t = 0  

Boundary condition: C = C1  for x = 0 , t > 0 

Where, x is the distance from the drying surface and t is the drying time. 

Since the slope of the curve C(τ) is very sharp at the beginning of drying, small inaccuracies 

in estimating the function C(τ) from experimental data can make a big difference on the 

resulting derivative to be used in Eq. 1. This affects significantly the calculated KC at the 

beginning of drying. Therefore, this method is not generally satisfactory and some scholars 

have suggested adopting numerical inverse analysis instead [3, 4] to obtain KC.  

Vapour transfer in air occurs with a diffusion coefficient of about 218 mm
2
/day at 20 ºC, that 

is nearly 50 to 100 times faster than in concrete [18]. This upper limit has not been respected 

in values determined by some researchers (e.g. [1, 23]), proposing values up to 10000 

mm
2
/day for the diffusion coefficient in concrete. Based on the values proposed by other 

researchers [2, 18, 22, 27], the diffusion coefficient in concrete reaches maximum values 

between 20 to 100 mm
2
/day at 100% moisture content. In some studies a constant value has 

been determined for the diffusion coefficient of concrete (the constant value of 9.29 mm
2
/day 

by Carlson [20] and the value of 23 mm
2
/day by Pickett [21]), while an S-shape curve has 

been proposed in other references [2, 19] to express the variation of the moisture diffusivity 

with the moisture content. These differences in values proposed in the literature are large 

enough to change completely the drying pattern in concrete. Hence, for the particular 

concrete mixes studied herein the diffusion coefficient will be determined from experimental 

measurements combined with inverse FE analysis. 

2.2   Convective moisture transfer coefficient  

Convective moisture transfer coefficient, f, deals with the moisture exchange between the 

concrete surface and the atmosphere. It depends on the water-cement ratio, w/c [2], the 

moisture gradient, the surface texture and the speed of air flow. However, the overall effect 

of the environment on f is negligible [18]. For normal concrete, f was found by Sakata [2] to 

be in the range of 0.75 mm/day to 7.0 mm/day; a very wide range of values. To improve the 
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accuracy of predictions, for the particular concrete mixes studied in this paper, f will be 

calculated by inverse FE analysis. 

2.3   The relationship between free shrinkage strain and moisture loss (Hygral contraction 

coefficient) 

This relationship is a material property applicable for any shape of concrete member with 

any type of restraint. Free shrinkage strain is normally given as a nonlinear function of 

drying time and ultimate shrinkage (e.g. in [28, 29]). Ultimate shrinkage strain is usually a 

function of ambient relative humidity, initial curing condition, volume to surface ratio, 

concrete composition, air content and percentage of fine aggregates. These factors indirectly 

alter ultimate shrinkage strain by affecting the moisture movement in the concrete and the 

resultant moisture content at any given time, t. Therefore, it is simpler to directly relate free 

shrinkage strain to relative moisture content. The relationship between moisture loss and free 

shrinkage strain is nonlinear [17], although it was initially thought by researchers to be linear 

(e.g. [21]). Ayano et al. [18] proposed a power function for this relationship. 

To quantify shrinkage as a material property, concrete should be stress-free or unrestrained. 

Concrete dries slowly from the surfaces, which means it dries non-uniformly during the 

experimental time period. This invariably leads to a moisture gradient and consequently a 

shrinkage gradient develops through the section of the specimen.  

Direct measurement of free shrinkage in sizeable concrete elements is not straightforward for 

two reasons: 1) Due to non-uniform drying, measured shrinkage varies depending on the 

location of the measurement; 2) Internal restraint develops due to non-uniform shrinkage 

leading to tensile stresses on the surfaces and compressive stresses in the core of the 

specimen. Tensile stresses can restrain free shrinkage on the surface and compressive 

stresses increase the apparent shrinkage strain of the core. The degree of developed internal 

restraint depends on the specimen size and aggregate type. Hence, unrestrained drying 

shrinkage can only be measured on small specimens with a thickness of a few millimetres 

[30]. Small specimen sizes are suitable for cement-paste materials, but not for concrete with 

normal aggregates and particularly for RCC.  

In this study inverse analysis is adopted to calculate the relationship between free shrinkage 

strain and moisture content from experimental measurements on sizeable prismatic 

specimens. In this case, FE analysis deals directly with the issue of internal restraint due to 

the moisture gradient. Hence, it is possible to obtain free shrinkage properties even from the 

experimental results on sizeable specimens. Since the duration of experimental 
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measurements is relatively short, intrinsic creep or the viscous behaviour of concrete under 

sustained stresses is ignored.  

3     Experimental study 

3.1   Mix proportions and characteristics 

Two plain mixes and two SFRC mixes were cast including both RCC and CC mixes. Mix 

proportions, typical of UK practice, are shown in Table 1. A sulfo-aluminate low energy 

cement was adopted to reduce environmental impact. The air content of the CC mixes was 

5% and the target slump was 70 mm.   

 

The fibre content used for SFRC mixes was the optimum practical amount for recycled 

fibres determined by the Ecolanes [12] project (60 kg per each cubic meter of concrete or 

around 2.5% by weight). The statistical length distribution of RTSF used is this study is 

shown in Fig. 1 (85% of the fibres had length in the range of 10 to 25 mm, and 50% of them 

in the optimum range of 15-25 mm). These comply with Class A RTSF as defined by 

Ecolanes [12]. These fibres had diameter in the range of 0.1 to 0.23 mm and a tensile 

strength of around 2000 MPa.  

 

The aggregates used for CC mixes were river aggregates. Graded crushed granite was used 

for the RCC mixes, as is the normal practice in the UK, to increase the bond between the 

paste and aggregate and to provide stability during rolling. To avoid balling and to optimise 

the use of fibres in concrete, it is normally recommended that the nominal maximum size of 

coarse aggregate is less than 2/3 of the dominant fibre length [31]. As a result the nominal 

maximum size of aggregates was limited to 14 mm. The aggregate gradation is shown in 

Table 2. This gradation complies with the bounds adopted by industry in the UK. The 

Table 1 Proportions used for concrete mixes 

Mix 
Cement 

(kg/m
3
) 

W/C 

Crushed 

aggreg. 

(kg/m
3
) 

River 

aggreg. 

(kg/m
3
) 

Sand 

(kg/m
3
) 

Superplasticizer
a
 

 
Air-entrainer

a
 

CC 380 0.35 - 1004 833 0.85% 0.135% 

RCC 300 0.54 2084 - - - - 
a
 % by cement mass 

 

Fig. 1 Statistical length distribution of steel tyre-cord fibres used in SFRC mixes 
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aggregates were stored indoor prior to mixing in a dry condition with an environmental 

humidity of about 40%.  

 

For CC the recommendations of the BS 8500-1 [32] were used to develop a designated 

PAV2 mix which is an accredited mix that can be used for heavy-duty external paving for 

rubber tyre vehicles. Since steel fibres are randomly distributed inside the concrete, the mix 

was designed to comply with the minimum cover requirement. Considering cyclic wet and 

dry conditions for pavement applications with an intended working life of at least 50 years, a 

cement content of 380 kg/m3 and a water-cement ratio of 0.35 were required to fulfill the 

minimum cover requirements. 

For the RCC mix design, the cement content of 300 kg was selected to achieve the same 

strength as for CC. The RCC water content was optimized to yield the maximum dry density 

for the compacted mix (7% by mass for the used cement and aggregates). 

RCC has generally lower cement content and reduced amount of water compared to CC. 

However, for SFR-RCC enough paste should be provided to enable adequate fibre bond. For 

CC, super plasticizer was used to reduce water demand; this was not possible for RCC.  

A specially designed device having a fixed weight and a 1.6 kW electric vibrating hammer 

(16 to 32.5 Hz) was used for compaction of RCC specimens. RCC specimens were cast in 

three layers each compacted for 60 seconds. The 28 day compressive strength, obtained from 

150 mm cubes, is given in Table 3.  

 

3.2   Moisture measurement in concrete 

For one dimensional moisture transport, two methods are usually used to measure the depth 

distribution of moisture as a function of time: 1) A method using small probe-type sensors 

Table 2 Gradation of aggregates used for CC and RCC mixes 

gradation (mm) 
CC mixes RCC mixes 

Sand (%) Coarse agg. (%) Crushed agg. (%) 

9.5-14 - 10 21.5 

4.75-9.5 2 80 21 

1.18-4.75 26 10 19.5 

0.5-1.18 32 - 10.5 

0.15-0.5 37 - 14 

.075-0.15 2 - 7 

< 0.075 1 - 6.5 

 

Table 3 Average 28-days compressive strength  
 Compressive strength, MPa 

CC mixes (SD) RCC mixes (SD) 

Plain concrete 58 (1.6) 49 (1.7) 

SFRC 61 (0.0) 51 (1.0) 
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embedded in the concrete specimens at different distances from a surface exposed to drying; 

2) The gravimetric method. 

Embedded sensors usually need longer time to stabilise their reading, hence they are not 

suitable in the early stages when moisture content drops sharply. In the conventional 

gravimetric method [2, 3, 23, 24, 25], specimens of different heights are cast (Fig. 2) and 

their weight changes are measured in frequent time steps to determine loss of moisture 

through the depth. As a result, this method does not account for moisture exchange from the 

underlying depth of concrete as it assumes that the moisture content at any given depth is 

independent of the total height of the specimen. In this study, the conventional gravimetric 

method has been modified to preserve the original moisture boundary condition from the 

bottom boundary. In this modified method, all specimens are cast with the same total height 

and each is sliced at a given depth (h1, h2, h3, etc.), the integrity of specimen is maintained by 

keeping both segments in contact for the duration of the measurements (Fig. 3).  

 

 

Specimens were initially cast in 550×150×150 mm steel moulds and cured in water for 90 

days. Each prism was then cut to make three 180×150×150 mm long prisms each sliced in 

two segments at different depths as illustrated in Fig. 4. Cutting was performed in wet 

conditions and the specimens were protected from drying before being sealed. The sides of 

the top and bottom segments were sealed separately (Fig. 5(a), surfaces 1 to 4 in the top 

segment and surfaces 1 to 5 in the bottom segment), using a high-performance 5 ply 

laminated aluminum foil tape. This approach was designed to provide one-dimensional 

 

Fig. 2 Specimens in the conventional gravimetric method for moisture measurement 

Sealed

h1

Moisture diffusion Moisture diffusion Moisture diffusion

h2
h3

Sealed

Sealed

 

Fig. 3 Specimens in the modified gravimetric method for moisture measurement 
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drying conditions. Three specimens were cast for each depth, hi. After each weight 

measurement, the two segments were put back together (Fig. 5(b)) and the joint was sealed 

using a new 75 mm wide plastic tape (Fig. 5(c)). This piece of tape could be easily unwound 

for the next measurement and was discarded after each use. 

 

 

The only issue that needs consideration in this method is the effect of the contact between 

the two segments on moisture transfer. The cut plane may disturb the assumed one 

dimensional moisture movement. If the gap is considerable, the air layer between 

discontinuity surfaces may change the rate of moisture transfer. This effect has been studied 

by Ayano et al. [18], who carried out experiments on specimens prepared by piling up 11 

slices 150 × 100 × 3 mm and sealing the outer surfaces, for determination of moisture 

distribution. For comparison, solid specimens of 150 × 100 × 33 mm were also used with the 

same sealing conditions. Two solid specimens and nine sliced specimens were put in an 

environmental chamber with relative humidity of 45% at 20 °C. Drying began at the age of 

14 days. Moisture loss was measured at 0.5, 3, 7, 13, 27, 42, 56, 70, and 98 days after the 

start of drying. At each measurement one of the sliced specimens was used; the sealing foil 

was removed to obtain the moisture loss of each slice and then the specimen was discarded. 

The moisture distribution obtained from the piles of sliced specimens was used as a 

substitute for that of the solid specimens in order to obtain the diffusion coefficient. From 

 

Fig. 4 Cutting depths in moisture measurement 
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Fig. 5 Sealing specimens in the modified gravimetric method 
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that study, it was found that the effect of cutting the specimens on the moisture flow can be 

considered to be small.  

The specimens were placed in a chamber with relative humidity of 40±3% and temperature 

of 25±3ºC. Weight changes were measured at frequent time intervals to determine the 

moisture content over time. 

After 84 days of measurements, the specimens were unsealed and put in the oven for a 

period of seven days at 120ºC. This duration was not long enough to dry the core of the thick 

specimens, but for the specimens thinner than 35 mm the drying rate approached zero 

towards the end of the week. Therefore, the dry density of each mix was determined by 

averaging the dry weight of segments having thicknesses less than 35 mm. 

Shrinkage in concrete is due to loss of water either to internal chemical reactions in 

immature concrete (autogenous water loss) or to the environment (drying). Autogenous 

shrinkage takes place early and is strongly dependent on the curing conditions; it can be 

limited by keeping the surface of the concrete continuously wet. On the other hand, drying 

shrinkage is a long term issue and it is inevitable under normal service conditions.  To 

simplify the interpretation of results, it is easier to assume wet curing and thus do not take 

into account autogenous shrinkage. To ensure that only drying shrinkage was monitored in 

the experiments, and there was no significant effect from autogenous and plastic shrinkage, 

measurements started only after the concrete specimens matured in water for 90 days.  

 3.2.1   Calculation of moisture content in the gravimetric method 

The moisture content, C(x , t), as a percentage of initial diffusible moisture, at any depth xi 

 (as shown in Fig. 6 (a) and (b)) and at time t can be calculated from Eq. 2 and Eq. 3 [23]. 

C(xi , t) = [1 - (Mti – Mt(i – 1)) / (γ0i . S. (hi – hi – 1)] × 100  Eq. 2 

γ0i = (W0i – Wfi) / (hi . S)        Eq. 3 

Where hi is the height of specimen i (top segments) (mm); Mti is the moisture loss in 

specimen i at time t (kg); S is the area of the drying surface (mm
²
); γ0i is the diffusible 

moisture per unit volume (kg/mm³); W0i is the initial weight of specimen i before drying 

(kg); Wfi is the dry weight after full drying in the oven (kg). 
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3.3   Free shrinkage measurements 

To measure free shrinkage, long prismatic specimens are needed [33, 34]. ASTM C 157 uses 

specimen size 76 × 76 × 286 mm whilst BS EN 12617-4 uses 40 × 40 × 160 mm. In this 

study, to eliminate the effect of boundary conditions on fibre distribution and due to 

limitations in compacting RCC in small moulds, the size of specimens was increased to 150 

×150 × 550 mm. The two end sides of the specimen were sealed thus moisture transport was 

only allowed from the exposed sides (Fig. 7). To provide uniform drying and unrestrained 

conditions, the specimens were rested on two sharp edges whilst drying (Fig. 8). The length 

changes were measured over time, using a specially developed Vernier type device with an 

accuracy of ±0.02 mm. The environmental conditions were the same as those for the 

specimens in moisture measurement (see Section 3.2). 

 

 

 

Fig. 6 (a) Specimen i in formulation of the moisture content; (b) Continuous specimen in 

formulation of the moisture content 

Moisture diffusion

Sealed

Sealed
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Moisture diffusion

x

Sealed
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x

 

Fig. 7 Prismatic specimen for free shrinkage measurement 

Moisture diffusion

 

Fig. 8 Free shrinkage specimens 
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3.4   Experimental results and discussion 

Fig. 9 shows the time histories of moisture profiles derived from moisture measurements for 

each concrete mix. Each curve represents the mean value taken from three samples (COVs 

up to 0.15 but mostly up to 0.04). These results show that the penetration of the drying front 

in concrete is so slow, such that after around 84 days drying at 40% environmental humidity, 

the moisture content at a depth of 10 mm from the drying surface only dropped in the range 

of 65-70%, whereas, at a depth of 35 mm the moisture content remained above 90%. The 

fastest rate of drying occurs at early ages and then it decreases with time. RCC and SFRC 

mixes dry faster than CC and plain mixes, respectively, due to their higher porosities. The 

experimental moisture profiles are used in Section 4.3.1 and 4.3.2 to back-calculate moisture 

diffusivities, KC(C), and surface factors, f, respectively. 

 

Free shrinkage test results in terms of shrinkage strain versus drying time are presented in 

Fig. 10. For RCC mixes, shrinkage occurs at a relatively uniform rate. For CC mixes, 

shrinkage occurs at a fast rate at early ages and then the rate considerably decreases. This 

results in a lower short-term shrinkage for RCC compared with CC, as reported in the 

literature. However, the results show that at the end of the measurement period shrinkage of 

the RCC mixes exceeds that of CC mixes. Free shrinkage test results are used in Section 

4.3.3 to back-calculated the hygral contraction coefficients, βC(C). 

 

Fig. 9 Experimental moisture profiles 
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4     Numerical study 

4.1   Analysis approach  

For numerical analysis, the authors used the FE package ABAQUS [35]. Although 

ABAQUS has the ability to model deformable porous media [35, 36], the number of 

parameters that need to be determined can be prohibitive. As mentioned in Section 2, 

moisture movement in the form of vapour flux is dominant, thus the drying mechanism may 

be simplified (assuming Fick’s second law), requiring only two parameters. Whilst the 

moisture diffusion option is not available in ABAQUS, the heat transfer option is. Therefore, 

the heat transport module of ABAQUS was exploited due to the analogy between the 

governing diffusion equations, with a simple substitution of parameters. This was coupled 

with structural analysis to calculate shrinkage deformations. Free moisture content was 

replaced by temperature, moisture diffusivity by thermal conductivity, and hygral 

contraction coefficient by thermal coefficient of expansion. To avoid the effect of extra 

multipliers which are needed in the heat transfer equation, but not in the moisture transport 

equation, specific heat and density were taken equal to unity. By using inverse analysis for 

each concrete mix, moisture diffusivity and surface factor were back-calculated from the 

moisture measurement test results, and hygral contraction coefficient from free shrinkage 

measurements. During the inverse analysis, the mentioned properties were optimised 

manually to minimise the difference between the experimentally measured moisture profiles 

and shrinkage histories and those from the model. 3-D, 8-noded solid elements were used for 

modeling as shown in Fig. 11; DC3D8 for thermal analysis and C3D8 for structural analysis. 

In modeling free shrinkage, only half prisms were modelled due to symmetry, as seen in Fig. 

11(b).  

 

Fig. 10 Strain history curves for free shrinkage specimens 
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4.2   Boundary and initial conditions  

A constant ambient humidity of 40% was considered, and moisture convection from the 

exposed surfaces was taken into account by a surface factor, as described in Section 2. The 

sealed surfaces were assumed not to have any moisture interaction with the surrounding 

environment. At time zero, the specimens were fully saturated. 

4.3    Numerical results and discussion  

4.3.1   Determination of moisture diffusivities 

The back-calculated moisture diffusivities, KC(C), as functions of moisture content, C, 

derived from experimental moisture profiles, are shown in Fig. 12 for different mixes. 

Moisture diffusivities vary in the range of 0-5 mm
2
/day for moisture content lower than 87-

92% and then increase sharply. The moisture diffusivity of RCC mixes is slightly higher than 

that of CC mixes, and of SFRC mixes slightly higher than of plain mixes. This may be due to 

the higher porous nature of RCC and air trapped around fibres for SFRC.  

 

4.3.2   Determination of surface factors 

 
                           (a)                                                            (b) 

Fig. 11 FE model (a) Moisture measurement specimens, (b) Free shrinkage prisms 
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        Fig. 12 Moisture diffusivity, KC(C), versus moisture content, C  
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The surface factors, f, derived from experimental moisture profiles by inverse analysis, were 

found to be in the range of 3-10 mm/day for CC mixes, and 5-10 mm/day for RCC mixes. 

Surface factors can significantly affect the moisture profiles near the drying surface. Away 

from the drying surface, the effect of surface factor on the moisture profiles diminishes 

quickly, as shown in Fig. 13. To improve the accuracy of the back-calculated surface factors, 

the experimental values of moisture variation at very close distance from the drying surfaces 

are required, which are not always possible to measure. However, the accuracy of surface 

factors in the calculated ranges does not appear to have any significant effect on the moisture 

profiles, especially at the end of the drying period. 

 

4.3.3   Determination of the hygral contraction coefficient 

The hygral contraction coefficients, βC(C), were back-calculated as functions of moisture 

content, C, using free shrinkage test results. The coefficient βC(C) induces free shrinkage 

strain, (εsh)C, in the specimen based on Eq. 4.  

   (εsh)C = - βC(C) × (C0 – C)   Eq. 4  

Where, C0 is the reference moisture content, 1.0. 

A power function was assumed for the variation of βC(C) versus C [18], as given in Eq. 5, 

and the constant parameters, a and b, were obtained by inverse analysis for the experimental 

concrete mixes (Table 4).  

βC(C) = - a × (C0 – C)
b – 1 

  Eq. 5
 

 

Fig. 13 The effect of various surface factors, f, on the moisture profiles at different depths for 

RCC specimens 
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The calculated values of βC(C) are shown in Fig. 14, for various concrete mixes. The hygral 

contraction coefficient of CC is higher than that of RCC for moisture contents higher than 

80%, for both SFRC and plain mixes. This can be attributed to the higher restraining effect 

of crushed aggregates in RCC mixes, the higher percentage of aggregate used and the 

different pore structure of RCC. For moisture contents lower than 80%, the hygral 

contraction coefficient of CC reaches that of RCC. The hygral contraction coefficient of 

SFRC is generally lower than that of plain mixes (RCC and CC). This effect can be 

attributed to the restraining effect of the fibres and the different pore structure of SFRC. The 

hygral contraction coefficient obtained by Ayano et al. [16] for a conventional plain concrete 

is also shown in Fig. 14 for comparison purposes.   

 

4.3.4   Comparison with experimental values 

4.3.4.1    Moisture profiles 

Assuming the moisture diffusivity curves shown in Fig. 12 and the lower limit of the 

estimated ranges for the surface factors, the numerically calculated moisture profiles are as 

given in Fig. 15. The curves presented in Fig. 15 are best fit curves to the experimental 

results (also shown), determined by changing moisture diffusivity and surface factors. 

Table 4 Back-calculated constant parameters, a and b  

 
a b 

Plain CC  1100E-6 0.35 

SFR-CC   900E-6 0.4 

Plain RCC 2500E-6 0.8 

SFR-RCC 1900E-6 0.9 

 

 

            Fig. 14 Hygral contraction coefficients versus moisture content 
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As seen in Fig. 15, the use of the diffusion theory as the single moisture transfer mechanism 

in concrete represents satisfactorily the experimental results at moisture contents lower than 

75-80%. For moisture contents higher than 80%, the numerically calculated curves do not 

match the experimental results very well even using alternative profiles for moisture 

diffusivity. This indicates that for nearly saturated conditions, bulk water flux also 

participates in moisture transport. This could be the cause of discrepancy at the early drying 

stage between the experimental curves and numerical curves which have been obtained 

considering vapour flux as the single moisture transport mechanism. However, even in the 

worse cases, the difference between the experimental and the numerically predicted values is 

still limited to 10%. 

4.3.4.2    Free shrinkage 

Based on the calculated parameters, curves of shrinkage strain versus drying time for free 

shrinkage specimens are presented in Fig. 16 in comparison with experimental values. 

 
         (a) Plain CC mix                                         (b) Plain RCC mix 

 

        (c) SFR-CC mix (2.5%)                             (d) SFR-RCC mix (2.5%) 

Fig. 15 Numerical and experimental moisture profiles: (a) Plain CC mix; (b) Plain RCC mix; 

(c) SFR-CC mix (2.5%); (d) SFR-RCC mix (2.5%) 
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In the shrinkage curve of the plain CC mix shown in Fig. 16(a), an unexpected relative 

expansion is seen around 20 days. This concrete mix is naturally less porous than other 

mixes, and the results of the hygral contraction coefficient show a sharp decline at high 

moisture contents for this mix. The relative expansion is observed in 3 tested plain CC 

specimens as well as in its numerical results. This phenomenon does not seem to be due to 

an uncontrolled experimental condition, as all the mixes were in the chamber at that time. In 

the numerical model this relative transient expansion can arise because the hygral 

contraction coefficient of the plain CC mix rises sharply after 99.9%. As presented in Fig. 

17, if the hygral contraction coefficient is limited to the value corresponding to 99.9% 

moisture content, the expansion does not develop. In sizeable specimen, the sharp decline in 

the hygral contraction coefficient combined with internal restraints creates tensile stresses 

moving from the surface inwards with time (as shown in Figure 18). These tensile stresses 

can lead to a relative small expansion in the specimen between 15 to 20 days, when tensile 

 

      (a) Plain CC mix                                      (b) Plain RCC mix 

 
      (c) SFR-CC mix (2.5%)                      (d) SFR-RCC mix (2.5%) 

Fig. 16 Numerical free shrinkage compared with experimental results 
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stresses arrive close enough to the core.  However, further investigations are required to 

verify experimentally this effect. More experimental tests with different specimen sizes and 

under various environmental conditions are suggested.  

 

 

5     Conclusions  

Moisture transport and drying shrinkage properties were back-calculated for given concrete 

compositions by inverse FE analysis.  The following was found: 

 

          (a) 

 

            (b) 

         Fig. 17 Effect of considering upper limit for βc(C) for plain CC mix; (a) Limits, (b) 

Free shrinkage time histories 
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Fig. 18 Tensile wave, moving from the surface inward 
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 Concrete drying is a very slow process and after 84 days of drying at 40% relative 

humidity, concrete remained nearly saturated (≈ 95%) at depths bigger than 35 mm from 

the drying surface.  

 The rate of drying is relatively fast at the early ages decreasing with time. Drying in RCC 

and SFRC mixes is faster than CC and plain mixes, respectively, due to the higher 

porosity in the former mixes. This results in higher estimated moisture diffusivity for 

RCC than CC, and slightly higher for SFRC than plain concrete. The moisture diffusivity 

is in the range of 0-5 mm
2
/day for moisture content up to 80% and then rises sharply for 

all mixes.   

 The effect of surface factor on the moisture profiles is only significant near the drying 

surface; away from the drying surface this effect quickly diminishes.  

 At early ages, free shrinkage of CC mixes occurs at a fast rate and then the rate 

considerably decreases, while for RCC mixes shrinkage occurs at a more uniform rate. 

This could be a reason for the lower short-term shrinkage reported in the literature for 

RCC compared with CC. However, in this research at the end of the measurement period, 

shrinkage of the RCC mixes matched shrinkage obtained for CC mixes.  

 The hygral contraction coefficient of SFR-RCC, SFR-CC, plain RCC and plain CC mixes 

were obtained as a function of moisture content. This coefficient for CC mixes is higher 

than that of RCC mixes for moisture contents higher than 80%. The reason is the higher 

restraining effect of crushed aggregates in RCC mixes and the different pore structure of 

RCC. The hygral contraction coefficient of SFRC mixes is generally lower than that of 

plain mixes due to the restraining effect of fibres. For moisture contents lower than 80% 

the hygral contraction coefficients are similar for all mixes in the range of 0.0012-0.0035.  

The above material properties are necessary to analyse numerically the performance of 

concrete pavements and ground restrained slabs. These are used in other work by the authors 

to assess the combined effect of shrinkage and externally applied traffic load [6]. 
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Appendix A: Diffusion equation for moisture transport in concrete 

The transport of moisture in concrete is governed by Eq. (A.1). 

∂C / ∂t = div (KC(C) grad(C))  Eq. (A.1) 

Where, C is the moisture content which is a function of spatial components and the time 

from the beginning of the diffusion process, and KC(C) is the diffusion coefficient. This 

coefficient is a property of the material and is defined as the rate of moisture flow within the 

concrete while the moisture gradient is equal to unity. The above equation is strongly 

nonlinear and the nonlinearity of that is due to high dependency of KC on the moisture 

content [19]. 

 

For any particular geometry, applying boundary and initial conditions, Eq. (A.1) can be 

solved for C. For a boundary with surface evaporation Eq. (A.2) applies. With prescribed 

moisture Eq. (A.3), and for a no flow boundary Eq. (A.4) applies [23]. 

KC(C) ∂C / ∂n = f (Cs – Ca)         Eq. (A.2) 

 C = Cb           Eq. (A.3) 

 ∂C / ∂n = 0      Eq. (A.4) 

Where, f is the convective moisture transfer coefficient (also called surface factor or film 

factor). Cs is the moisture content at the drying surface, Ca is the moisture content in the 

atmosphere, Cb is the prescribed moisture, and n is the unit normal to the boundary surface. 
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