8,151 research outputs found

    Measurement and Particle Statistics in the Szilard Engine

    Full text link
    A Szilard Engine is a hypothetical device which is able to extract work from a single thermal reservoir by measuring the position of particles within the engine. We derive the amount of work that can be extracted from such a device in the low temperature limit. Interestingly, we show this work is determined by the information gain of the initial measurement rather than by the number and type of particles which constitute the working substance. Our work provides another clear connection between information gain and extractable work in thermodynamical processes.Comment: 4 page

    Revisiting Deniability in Quantum Key Exchange via Covert Communication and Entanglement Distillation

    Full text link
    We revisit the notion of deniability in quantum key exchange (QKE), a topic that remains largely unexplored. In the only work on this subject by Donald Beaver, it is argued that QKE is not necessarily deniable due to an eavesdropping attack that limits key equivocation. We provide more insight into the nature of this attack and how it extends to other constructions such as QKE obtained from uncloneable encryption. We then adopt the framework for quantum authenticated key exchange, developed by Mosca et al., and extend it to introduce the notion of coercer-deniable QKE, formalized in terms of the indistinguishability of real and fake coercer views. Next, we apply results from a recent work by Arrazola and Scarani on covert quantum communication to establish a connection between covert QKE and deniability. We propose DC-QKE, a simple deniable covert QKE protocol, and prove its deniability via a reduction to the security of covert QKE. Finally, we consider how entanglement distillation can be used to enable information-theoretically deniable protocols for QKE and tasks beyond key exchange.Comment: 16 pages, published in the proceedings of NordSec 201

    Quiet eye facilitates sensorimotor preprograming and online control of precision aiming in golf putting

    Get PDF
    Introduction An occlusion protocol was used to elucidate the respective roles of preprograming and online control during the quiet eye period of golf putting. Methods Twenty-one novice golfers completed golf putts to 6ft and 11ft targets under full vision or with vision occluded on initiation of the backswing. Results Radial error (RE) was higher, and quiet eye was longer, when putting to the 11ft vs. 6ft target, and in the occluded vs. full vision condition. Quiet eye duration, as well as preprograming, online and dwell durations, were longer in low-RE compared to high-RE trials. The preprograming component of quiet eye was significantly longer in the occluded vision condition, whereas, the online and dwell components were significantly longer in the full vision condition. Conclusion The findings demonstrate an increase in preprograming when vision is occluded. However, this was not sufficient to overcome the need for online visual control during the quiet eye period. These findings suggest the quiet eye period is composed of preprograming and online control elements, however, online visual control of action is critical to performance

    On the nature of the omega tri-layer periodicity in rapidly cooled Ti-15Mo

    Get PDF
    High angle annular dark field (HAADF) images of the omega phase in metastable beta titanium alloys exhibit tri-layered periodicity. However, it is unclear if this indicates preferential site occupation, or is related to the structural modification of omega formation. Here, the periodicity was studied using a combination of HAADF imaging and electron energy loss spectroscopy. The results show that there is no preferential site occupancy or ordering and that the observed intensity variations are related to the imaging conditions.This work was supported by the Rolls-Royce/EPSRC Strategic Partnership (EP/H022309/1, EP/H500375/1 & EP/M005607/1).This is the final version. It was first published by Elsevier at http://www.sciencedirect.com/science/article/pii/S1359646215002213

    Molecular clutch drives cell response to surface viscosity

    Get PDF
    Cell response to matrix rigidity has been explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. Here the molecular clutch model is extended to account for cell interactions with purely viscous surfaces (i.e., without an elastic component). Supported lipid bilayers present an idealized and controllable system through which to study this concept. Using lipids of different diffusion coefficients, the mobility (i.e., surface viscosity) of the presented ligands (in this case RGD) was altered by an order of magnitude. Cell size and cytoskeletal organization were proportional to viscosity. Furthermore, there was a higher number of focal adhesions and a higher phosphorylation of FAK on less-mobile (more-viscous) surfaces. Actin retrograde flow, an indicator of the force exerted on surfaces, was also seen to be faster on more mobile surfaces. This has consequential effects on downstream molecules; the mechanosensitive YAP protein localized to the nucleus more on less-mobile (more-viscous) surfaces and differentiation of myoblast cells was enhanced on higher viscosity. This behavior was explained within the framework of the molecular clutch model, with lower viscosity leading to a low force loading rate, preventing the exposure of mechanosensitive proteins, and with a higher viscosity causing a higher force loading rate exposing these sites, activating downstream pathways. Consequently, the understanding of how viscosity (regardless of matrix stiffness) influences cell response adds a further tool to engineer materials that control cell behavior

    The Structure of the Non-SUSY Baryonic Branch of Klebanov-Strassler

    Full text link
    We study the two-dimensional space of supergravity solutions corresponding to non-supersymmetric deformations of the baryonic branch of Klebanov-Strassler. By combining analytical methods with a numerical survey of the parameter space, we find that this solution space includes as limits the softly-broken N=1 solutions of Gubser et al. and those of Dymarsky and Kuperstein. We also identify a one-dimensional family of solutions corresponding to a natural non-supersymmetric generalisation of Klebanov-Strassler, and one corresponding to the limit in which supersymmetry is completely absent, even in the far UV. For almost all of the parameter space we find indications that much of the structure of the supersymmetric baryonic branch survives.Comment: 29 pages plus appendices, 11 figure

    Temporal estimation in prediction motion tasks is biased by a moving destination

    Get PDF
    © 2018 The Authors. An ability to predict the time-to-contact (TTC) of moving objects that become momentarily hidden is advantageous in everyday life and could be particularly so in fast-ball sports. Prediction motion (PM) experiments have sought to test this ability using tasks where a disappearing target moves toward a stationary destination. Here, we developed two novel versions of the PM task in which the destination either moved away from (Chase) or toward (Attract) the moving target. The target and destination moved with different speeds such that collision occurred 750, 1,000 or 1,250 ms after target occlusion. To determine if domain-specific experience conveys an advantage in PM tasks, we compared the performance of different sporting groups ranging from internationally competing athletes to nonsporting controls. There was no difference in performance between sporting groups and non-sporting controls but there were significant and independent effects on response error by target speed, destination speed, and occlusion period. We simulated these findings using a revised version of the linear TTC model of response timing for PM tasks (Yakimoff, Bocheva, & Mitrania, 1987; Yakimoff, Mateeff, Ehrenstein, & Hohnsbein, 1993) in which retinal input from the moving destination biases the internal representation of the occluded target. This revision closely reproduced the observed patterns of response error and thus describes a means by which the brain might estimate TTC when the target and destination are in motion

    Measurement of Permanent Electric Dipole Moments of Charged Hadrons in Storage Rings

    Full text link
    Permanent Electric Dipole Moments (EDMs) of elementary particles violate two fundamental symmetries: time reversal invariance (T) and parity (P). Assuming the CPT theorem this implies CP-violation. The CP-violation of the Standard Model is orders of magnitude too small to be observed experimentally in EDMs in the foreseeable future. It is also way too small to explain the asymmetry in abundance of matter and anti-matter in our universe. Hence, other mechanisms of CP violation outside the realm of the Standard Model are searched for and could result in measurable EDMs. Up to now most of the EDM measurements were done with neutral particles. With new techniques it is now possible to perform dedicated EDM experiments with charged hadrons at storage rings where polarized particles are exposed to an electric field. If an EDM exists the spin vector will experience a torque resulting in change of the original spin direction which can be determined with the help of a polarimeter. Although the principle of the measurement is simple, the smallness of the expected effect makes this a challenging experiment requiring new developments in various experimental areas. Complementary efforts to measure EDMs of proton, deuteron and light nuclei are pursued at Brookhaven National Laboratory and at Forschungszentrum Juelich with an ultimate goal to reach a sensitivity of 10^{-29} e cm.Comment: 8 pages, 2 figure

    Socioeconomic inequalities in vaccine uptake: A global umbrella review

    Get PDF
    This global umbrella review aimed to synthesise evidence of socioeconomic inequalities in the uptake of routine vaccinations and identify the mechanisms that may contribute to the association. To our knowledge, no attempt has been made to synthesise the global body of systematic reviews across a variety of vaccines, geographical locations, and measures of SES. The inclusion criteria were as follows: studies assessing vaccination uptake according to education, income, occupation/employment, and/or area-level deprivation; any country or universally recommended routine vaccination (according to the WHO); qualitative or quantitative reviews, published 2011-present. The searches were performed in eight databases. The screening process followed PRISMA-E guidelines, each stage was performed by one reviewer, and a 10% sample checked by a second for consistency. Included reviews underwent data extraction, quality appraisal (AMSTAR-2), and narrative synthesis according to country-context. After deduplication, 9,163 reports underwent title and abstract screening, leaving 119 full texts to be assessed for eligibility. Overall, 26 studies were included in the umbrella review. Evidence for lower uptake amongst disadvantaged SES individuals was found in all 26 reviews. However, 17 reviews showed mixed results, as inverse associations were also identified (lower uptake for advantaged SES, and/or higher uptake for disadvantaged SES). Those that explored high-income countries had a greater prevalence of mixed findings than those focusing on low/middle-income countries. The two most frequently cited mechanisms were vaccination knowledge, and confidence in vaccination or vaccination providers. These mechanisms were often understood by review authors as varying by level of education. We find socioeconomic differences in routine vaccination uptake, but the association did not always follow a gradient. Whilst education may be associated with uptake globally, our study indicates that its role varies by country-context. A limitation is the overlap of some primary studies across the included systematic reviews.10.1371/journal.pone.029468
    corecore