2,913 research outputs found

    A cross-sectional study of predatory publishing emails received by career development grant awardees

    Get PDF
    OBJECTIVE: To investigate the scope of academic spam emails (ASEs) among career development grant awardees and the factors associated with the amount of time spent addressing them. DESIGN: A cross-sectional survey of career development grant investigators via an anonymous online survey was conducted. In addition to demographic and professional information, we asked investigators to report the number of ASEs received each day, how they determined whether these emails were spam and time they spent per day addressing them. We used bivariate analysis to assess factors associated with the amount of time spent on ASEs. SETTING: An online survey sent via email on three separate occasions between November and December 2016. PARTICIPANTS: All National Institutes of Health career development awardees funded in the 2015 fiscal year. MAIN OUTCOME MEASURES: Factors associated with the amount of time spent addressing ASEs. RESULTS: A total of 3492 surveys were emailed, of which 206 (5.9%) were returned as undeliverable and 96 (2.7%) reported an out-of-office message; our overall response rate was 22.3% (n=733). All respondents reported receiving ASEs, with the majority (54.4%) receiving between 1 and 10 per day and spending between 1 and 10 min each day evaluating them. The amount of time respondents reported spending on ASEs was associated with the number of peer-reviewed journal articles authored (p<0.001), a history of publishing in open access format (p<0.01), the total number of ASEs received (p<0.001) and a feeling of having missed opportunities due to ignoring these emails (p=0.04). CONCLUSIONS: ASEs are a common distraction for career development grantees that may impact faculty productivity. There is an urgent need to mitigate this growing problem

    Structural Studies on a Mitochondrial Glyoxalase II

    Get PDF
    Glyoxalase 2 is a β-lactamase fold-containing enzyme that appears to be involved with cellular chemical detoxification. Although the cytoplasmic isozyme has been characterized from several organisms, essentially nothing is known about the mitochondrial proteins. As a first step in understanding the structure and function of mitochondrial glyoxalase 2 enzymes, a mitochondrial isozyme (GLX2-5) from Arabidopsis thaliana was cloned, overexpressed, purified, and characterized using metal analyses, EPR and 1H NMR spectroscopies, and x-ray crystallography. The recombinant enzyme was shown to bind 1.04 ± 0.15 eq of iron and 1.31 ± 0.05 eq of Zn(II) and to exhibit kcat and Km values of 129 ± 10 s-1 and 391 ± 48 μm, respectively, when using S-d-lactoylglutathione as the substrate. EPR spectra revealed that recombinant GLX2-5 contains multiple metal centers, including a predominant Fe(III)Z-n(II) center and an anti-ferromagnetically coupled Fe(III)Fe(II) center. Unlike cytosolic glyoxalase 2 from A. thaliana, GLX2-5 does not appear to specifically bind manganese. 1H NMR spectra revealed the presence of at least eight paramagnetically shifted resonances that arise from protons in close proximity to a Fe(III)Fe(II) center. Five of these resonances arose from solvent-exchangeable protons, and four of these have been assigned to NH protons on metal-bound histidines. A 1.74-Å resolution crystal structure of the enzyme revealed that although GLX2-5 shares a number of structural features with human GLX2, several important differences exist. These data demonstrate that mitochondrial glyoxalase 2 can accommodate a number of different metal centers and that the predominant metal center is Fe(III)Zn(II)

    Combining Locations from Working Memory and Long-Term Memory into a Common Spatial Image

    Get PDF
    This research uses a novel integration paradigm to investigate whether target locations read in from long-term memory (LTM) differ from perceptually encoded inputs in spatial working-memory (SWM) with respect to systematic spatial error and/or noise, and whether SWM can simultaneously encompass both of these sources. Our results provide evidence for a composite representation of space in SWM derived from both perception and LTM, albeit with a loss in spatial precision of locations retrieved from LTM. More generally, the data support the concept of a spatial image in working memory and extend its potential sources to representations retrieved from LTM

    Perception of 3-D Location Based on Vision, Touch, and Extended Touch

    Get PDF
    Perception of the near environment gives rise to spatial images in working memory that continue to represent the spatial layout even after cessation of sensory input. As the observer moves, these spatial images are continuously updated. This research is concerned with (1) whether spatial images of targets are formed when they are sensed using extended touch (i.e., using a probe to extend the reach of the arm) and (2) the accuracy with which such targets are perceived. In Experiment 1, participants perceived the 3-D locations of individual targets from a fixed origin and were then tested with an updating task involving blindfolded walking followed by placement of the hand at the remembered target location. Twenty-four target locations, representing all combinations of two distances, two heights, and six azimuths, were perceived by vision or by blindfolded exploration with the bare hand, a 1-m probe, or a 2-m probe. Systematic errors in azimuth were observed for all targets, reflecting errors in representing the target locations and updating. Overall, updating after visual perception was best, but the quantitative differences between conditions were small. Experiment 2 demonstrated that auditory information signifying contact with the target was not a factor. Overall, the results indicate that 3-D spatial images can be formed of targets sensed by extended touch and that perception by extended touch, even out to 1.75 m, is surprisingly accurate

    Touch-Screen Technology for the Dynamic Display of 2D Spatial Information Without Vision: Promise and Progress

    Get PDF
    Many developers wish to capitalize on touch-screen technology for developing aids for the blind, particularly by incorporating vibrotactile stimulation to convey patterns on their surfaces, which otherwise are featureless. Our belief is that they will need to take into account basic research on haptic perception in designing these graphics interfaces. We point out constraints and limitations in haptic processing that affect the use of these devices. We also suggest ways to use sound to augment basic information from touch, and we include evaluation data from users of a touch-screen device with vibrotactile and auditory feedback that we have been developing, called a vibro-audio interface

    Genome sequence analysis of La Crosse virus and in vitro and in vivo phenotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>La Crosse virus (LACV), family <it>Bunyaviridae</it>, is a mosquito-borne virus recognized as a major cause of pediatric encephalitis in North America with 70–130 symptomatic cases each year. The virus was first identified as a human pathogen in 1960 after its isolation from a 4 year-old girl who suffered encephalitis and died in La Crosse, Wisconsin. The majority of LACV infections are mild and never reported, however, serologic studies estimate infection rates of 10–30/100,000 in endemic areas.</p> <p>Results</p> <p>In the present study, sequence analysis of the complete LACV genomes of low-passage LACV/human/1960, LACV/mosquito/1978, and LACV/human/1978 strains and of biologically cloned derivatives of each strain, indicates that circulating LACVs are genetically stable over time and geographic distance with 99.6–100%, 98.9–100%, 97.8–99.6%, and 99.2–99.7% amino acid identity for N, NsS, M polyprotein, and L proteins respectively. We identified 5 amino acid differences in the RNA polymerase and 4 nucleotide differences in the non-coding region of the L segment specific to the human virus isolates, which may result in altered disease outcomes.</p> <p>Conclusion</p> <p>All three wild type viruses had similar <it>in vitro </it>growth kinetics and phenotypes in mosquito C6/36 and Vero cells, and similar levels of neurovirulence and neuroinvasiveness in Swiss Webster mice. The biologically cloned derivative of LACV/human/1960 was significantly less neuroinvasive than its uncloned parent and differed in sequence at one amino acid position in the G<sub>N </sub>glycoprotein, identifying this residue as an attenuating mutation.</p

    Molecular evolution of the hyaluronan synthase 2 gene in mammals: implications for adaptations to the subterranean niche and cancer resistance

    Get PDF
    The naked mole-rat (NMR) Heterocephalus glaber is a unique and fascinating mammal exhibiting many unusual adaptations to a subterranean lifestyle. The recent discovery of their resistance to cancer and exceptional longevity has opened up new and important avenues of research. Part of this resistance to cancer has been attributed to the fact that NMRs produce a modified form of hyaluronan—a key constituent of the extracellular matrix—that is thought to confer increased elasticity of the skin as an adaptation for living in narrow tunnels. This so-called high molecular mass hyaluronan (HMM-HA) stems from two apparently unique substitutions in the hyaluronan synthase 2 enzyme (HAS2). To test whether other subterranean mammals with similar selection pressures also show molecular adaptation in their HAS2 gene, we sequenced the HAS2 gene for 11 subterranean mammals and closely related species, and combined these with data from 57 other mammals. Comparative screening revealed that one of the two putatively important HAS2 substitutions in the NMR predicted to have a significant effect on hyaluronan synthase function was uniquely shared by all African mole-rats. Interestingly, we also identified multiple other amino acid substitutions in key domains of the HAS2 molecule, although the biological consequences of these for hyaluronan synthesis remain to be determined. Despite these results, we found evidence of strong purifying selection acting on the HAS2 gene across all mammals, and the NMR remains unique in its particular HAS2 sequence. Our results indicate that more work is needed to determine whether the apparent cancer resistance seen in NMR is shared by other members of the African mole-rat clade.National Research Foundation (South Africa

    Environmental hydro-refugia demonstrated by vegetation vigour in the Okavango Delta, Botswana

    Get PDF
    Climate shifts at decadal scales can have environmental consequences, and therefore, identifying areas that act as environmental refugia is valuable in understanding future climate variability. Here we illustrate how, given appropriate geohydrology, a rift basin and its catchment can buffer vegetation response to climate signals on decadal time-scales, therefore exerting strong local environmental control. We use time-series data derived from Normalised Difference Vegetation Index (NDVI) residuals that record vegetation vigour, extracted from a decadal span of MODIS images, to demonstrate hydrogeological buffering. While this has been described previously it has never been demonstrated via remote sensing and results in relative stability in vegetation vigour inside the delta, compared to that outside. As such the Delta acts as a regional hydro-refugium. This provides insight, not only to the potential impact of future climate in the region, but also demonstrates why similar basins are attractive to fauna, including our ancestors, in regions like eastern Africa. Although vertebrate evolution operates on time scales longer than decades, the sensitivity of rift wetlands to climate change has been stressed by some authors, and this work demonstrates another example of the unique properties that such basins can afford, given the right hydrological conditions

    Quantum probabilities as Bayesian probabilities

    Full text link
    In the Bayesian approach to probability theory, probability quantifies a degree of belief for a single trial, without any a priori connection to limiting frequencies. In this paper we show that, despite being prescribed by a fundamental law, probabilities for individual quantum systems can be understood within the Bayesian approach. We argue that the distinction between classical and quantum probabilities lies not in their definition, but in the nature of the information they encode. In the classical world, maximal information about a physical system is complete in the sense of providing definite answers for all possible questions that can be asked of the system. In the quantum world, maximal information is not complete and cannot be completed. Using this distinction, we show that any Bayesian probability assignment in quantum mechanics must have the form of the quantum probability rule, that maximal information about a quantum system leads to a unique quantum-state assignment, and that quantum theory provides a stronger connection between probability and measured frequency than can be justified classically. Finally we give a Bayesian formulation of quantum-state tomography.Comment: 6 pages, Latex, final versio
    • …
    corecore