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Glyoxalase 2 is a �-lactamase fold-containing enzyme that
appears to be involved with cellular chemical detoxification.
Although the cytoplasmic isozymehas been characterized from sev-
eral organisms, essentially nothing is known about the mitochon-
drial proteins. As a first step in understanding the structure and
function of mitochondrial glyoxalase 2 enzymes, a mitochondrial
isozyme (GLX2-5) from Arabidopsis thaliana was cloned, overex-
pressed, purified, and characterized using metal analyses, EPR and
1H NMR spectroscopies, and x-ray crystallography. The recombi-
nant enzyme was shown to bind 1.04 � 0.15 eq of iron and 1.31 �

0.05 eq of Zn(II) and to exhibit kcat and Km values of 129 � 10 s�1

and 391 � 48 �M, respectively, when using S-D-lactoylglutathione
as the substrate. EPR spectra revealed that recombinant GLX2-5
contains multiple metal centers, including a predominant Fe(III)Z-
n(II) center and an anti-ferromagnetically coupled Fe(III)Fe(II)
center. Unlike cytosolic glyoxalase 2 fromA. thaliana, GLX2-5 does
not appear to specifically bind manganese. 1H NMR spectra
revealed the presence of at least eight paramagnetically shifted res-
onances that arise from protons in close proximity to a Fe(III)Fe(II)
center. Five of these resonances arose from solvent-exchangeable
protons, and four of these have been assigned to NH protons on
metal-bound histidines. A 1.74-Å resolution crystal structure of the
enzyme revealed that although GLX2-5 shares a number of struc-
tural features with human GLX2, several important differences
exist. These data demonstrate that mitochondrial glyoxalase 2 can
accommodate a number of differentmetal centers and that the pre-
dominant metal center is Fe(III)Zn(II).

The glyoxalase system consists of two enzymes, lactoylglutathione lyase
(glyoxalase I, GLX1)2 and hydroxyacylglutathione hydrolase (glyoxalase II,
GLX2), that act coordinately to convert a variety of �-ketoaldehydes into
hydroxy acids in the presence of glutathione (1). Aromatic and aliphatic
�-ketoaldehydes react spontaneously with glutathione to form thiohemi-
acetals,which are converted toS-(2-hydroxyacyl)glutathionederivatives by
GLX1. GLX2 hydrolyzes S-(2-hydroxyacyl)glutathione derivatives to
regenerate glutathione and produce hydroxy acids.Glyoxalase I, a Zn(II) or
Ni(II) metalloprotein, can utilize a number of �-ketoaldehydes (2). How-
ever, the primary physiological substrate of the enzyme is thought to be
methylglyoxal (MG), a cytotoxic andmutagenic compound that is formed

primarily as a by-product of carbohydrate and lipidmetabolism (3, 4).MG
can react with DNA to form modified guanylate residues (5) and inter-
strand cross-links (6). It also reacts with proteins to form glycosylamine
derivatives of arginine and lysine and hemithioacetals with cysteines (7).
Cells with high glycolytic rates exhibit high rates of methylglyoxal

formation and increased levels of GLX1 activity. For instance, increased
levels ofGLX1 andGLX2RNAand protein have been detected in tumor
cells, including breast carcinoma cells (8). Because selective inhibition of
the glyoxalase system could cause cellular toxicity, the glyoxalase
enzymes have been investigated as potential anti-tumor and anti-ma-
larial targets in animal systems (1, 9). Inhibitors of GLX1 and GLX2 can
inhibit the growth of tumor cells in vitro (10, 11) and in vivo (12) and
have been shown to have anti-proliferative effects on parasitic infections
(13). Finally, increased MG levels have been implicated with several
complications associated with diabetes mellitus (1, 14, 15), and changes
in glyoxalase enzymes have been linked with neurodegenerative disease
(16). Therefore, high levels of MG and the glyoxalase enzymes are asso-
ciated with several aspects of human disease.
GLXI has been studied extensively in a number of systems with

biochemical, computational, and x-ray crystallographic studies pro-
viding considerable insight into its kinetic mechanism (reviewed in
Refs. 17 and 18). Insight into the kinetic mechanism of GLX1 has
allowed the development of new classes of mechanism-based, com-
petitive inhibitors that can inhibit tumor growth in vitro and in vivo
(12, 19, 20).
Considerably less is known about the structure, reactionmechanism,

and physiological role(s) of GLX2. In contrast to GLX1, which is found
as a single isozyme, GLX2 exists as multiple isozymes in many organ-
isms, including yeast, plants, and animals. GLX2 activity has been found
in both the cytosol and mitochondria (21–23). Furthermore, GLX2
isozymes were found in both the matrix and inter-membrane space of
rat liver mitochondria (24, 25). Inmost cases, separate genes encode the
cytosolic and mitochondrial isozymes. However, in humans a single
gene produces both cytosolic andmitochondrial GLX2 (21). Therefore,
the physiological role(s) of GLX2 may be more complex than GLX1.
S-D-Lactoylglutathione (SLG) appears to be the preferred substrate

for GLX2 from most sources, including human, yeast, and plants
(26–33). However, GLX2 can hydrolyze many different glutathione
thioesters, including S-D-mandeloylglutathione, S-D-acetylgluta-
thione, S-D-acetoacetylglutathione, S-D-formylglutathione, S-D-gly-
colylglutathione, and S-D-lactonylglutathione. Most interestingly,
glyoxalase II isolated from African trypanosomes prefers thioesters of
trypanothione as substrates (34).
GLX2 is one of many protein families characterized to date that con-

tain a metallo-�-lactamase fold. The metallo-�-lactamases typically
bindZn(II) (35, 36), whereas the rubredoxin:oxygen oxidoreductase and
ZiPD families contain di-Fe and di-Zn centers, respectively (37, 38).
Arabidopsis cytoplasmic GLX2 (GLX2-2) can bind Zn(II), Fe, and Mn
(39–41), whereas the human enzyme was reported to bind two Zn(II)
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ions (42). The crystal structure of human cytoplasmic GLX2 showed
that one metal-binding site consisted of three conserved histidine resi-
dues, a bridging aspartic acid, and a bridging water/hydroxide. The sec-
ond metal-binding site had 2 histidines, 1 bridging Asp, 1 terminally
bound Asp, 1 bridging water/hydroxide, and 1 terminally bound water
(42). These crystallographic data have shown that the structures of the
metal-binding and active sites of GLX2 are similar to those of metallo-
�-lactamase L1 from Stenotrophomonas maltophilia (43). It has been
suggested recently that subtle differences in the metal-binding ligands
of �-lactamase fold-containing proteins may be responsible for differ-
ences in metal binding properties between the different enzymes (44).
This theory is supported bymutational studies onArabidopsisGLX2-2,
which have shown that mutations both inside and outside the metal-
binding ligands can affect the relative amount and identity of metal
bound by the enzyme (39). Therefore, metallo-�-lactamase fold-con-
taining enzymes can bind several differentmetals and catalyze a number
of different reactions.
The presence of mitochondrial isoforms of GLX2 is intriguing

because the GLX1 and its product SLG have only been observed in the
cytosol (1). Yet mitochondrial GLX2 from several sources appears to
utilize SLG as its preferred substrate (24, 26, 28). Furthermore, overall
sequence identity between the cytoplasmic andmitochondrial enzymes
is typically limited to 30–40%. Thus, the physiological substrate(s) and
the role(s) of mitochondrial GLX2 are not clear, and further research is
required in order to obtainmore detailed information on themitochon-
drial enzymes.
In an effort to better understand the specific roles of the different

GLX2 isozymes as well as to correlate structural and functional features
of this important class of enzymes, we have begun a characterization of
the GLX2 isozymes inArabidopsis thaliana. Five genes have been iden-
tified to encode putative GLX2 isozymes inA. thaliana (23). In addition
to GLX2-2, three GLX2 isozymes are localized in mitochondria
(GLX2-1, GLX2-4, and GLX2-5). The fifth GLX2-like gene, glx2-3,
encodes a protein that lacks many of the conserved substrate-binding
residues and may not in fact encode a functional GLX2 enzyme.3 To
date, detailed structural and kinetic studies have only been conducted
on the cytoplasmic isozyme of GLX2 (39–41). A mitochondrial GLX2
isozyme has not been studied in detail from any organism. Therefore,
we have overexpressed, purified, and characterized the mitochondrial
GLX2-5 isozyme from Arabidopsis using metal analysis, EPR and 1H
NMR spectroscopies, and x-ray crystallography.
Biochemical studies indicate that GLX2-5 is a FeZn protein that has a

preference for SLG as its substrate.Multiple metal centers, including an
anti-ferromagnetically coupled Fe(III)Fe(II) center, were identified by
EPR spectra, but EPR and the crystal structure analysis showed that the
predominant form of the enzyme contains an Fe(III)Zn(II) center.
These results represent the first detailed structural characterization

of a mitochondrial GLX2 enzyme from any source. They demonstrate
for the first time that �-lactamase fold-containing proteins can accom-
modate mixed metal centers and provide new insights into structure-
function features associated with GLX2 enzymes in particular and
�-lactamase fold-containing enzymes in general.

EXPERIMENTAL PROCEDURES

General—PCR reagents, Deep Vent DNA polymerase, restriction
enzymes (NdeI and XhoI), and S-D-lactoylglutathione were purchased
from Sigma and New England Biolabs (Beverly, MA). Primers were
synthesized by Integrated DNA Technologies (Coralville, IA). All chro-

matographic steps were carried out on a fast protein liquid chromatog-
raphy (FPLC; Amersham Biosciences) system operating at 4 °C. Col-
umns and resins for FPLC were purchased from Amersham
Biosciences. All protein and DNA quantitations were performed on an
Agilent 8453 UV-visible spectrophotometer.

Overexpression and Purification of Arabidopsis GLX2-5—PCR was
conducted on a GLX2-5 cDNA (39), with the primers CTCCCATAT-
GCAAATTGAACTGGTGCCTT and CGAGGATCCTCGGTCGA-
CGCTTTTTTTTTTTTTTTTT, which generated (NdeI and XhoI)
sites at the 5� and 3� ends of the fragment, respectively. For expression in
Escherichia coli, the leader sequence was removed by placing the N-ter-
minal methionine at amino acid 71 of the predicted protein sequence.
This construct yielded a protein with the same N terminus as the cyto-
plasmic form of the enzyme (Fig. 1). The 975-bp GLX2-5 PCR fragment
was cloned into pT7-7 by using NdeI and XhoI. The resulting plasmid,
GLX2-5/pT7-7, was transformed into DH10B E. coli cells, and the con-
struct was verified by DNA sequencing.
The GLX2-5/pT7-7 plasmid was transformed into E. coli BL21

(DE3)-Rosetta cells and used for overexpression and protein purifica-
tion as described previously (31). Protein production was induced by
making the culture 0.2 mM in isopropyl thio-�-D-galactoside, and the
culture was made 250 �M in Fe(NH4)2(SO4)2 and Zn(SO4)2. After
induction at 15 °C for 24 h, the cells were harvested, washed three times
with cold, sterile double distilled H2O to remove salts, and the cell
pellets were stored at �80 °C until further use.
The cell pellet was resuspended in 30 ml of 10 mM MOPS, pH 7.2,

containing 0.1 mM phenylmethylsulfonyl fluoride. The cells were lysed
by passage twice through a French press at 16,000 p.s.i., and the cell
debris was removed by centrifugation at 12,500 rpm for 45 min. The
cleared supernatant was purified using fast protein liquid chromatogra-
phy (FPLC) with a Q-Sepharose column as described previously (31).
Enzyme concentrations were determined by measuring the absorbance
at 280 nm and using a molar extinction coefficient of 37,800 M�1cm�1.
The molar extinction coefficient was determined by particle-induced
x-ray emission (PIXE) experiments (46), which were conducted by Dr.
W. Meyer-Klaucke at EMBL Outstation, Hamburg, Germany, as
described previously (38).3 S. Rhee and C. A. Makaroff, unpublished results.

FIGURE 1. Sequence alignment of GLX2-5 from A. thaliana and GLX2 from human.
The numbering is based on the GLX2-5 sequence.
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Metal Analyses—Metal analyses were performed on aVarian-Liberty
150 inductively coupled plasma spectrometer with atomic emission
spectroscopy detection as described elsewhere (31). The concentration
of GLX2-5 was 10 �M in 10 mM MOPS buffer, pH 7.2. A calibration
curve with five standards and a correlation coefficient of greater than
0.998 was generated using Zn, Mn, Fe, and Cu reference solutions. The
following emissionwavelengthswere chosen to ensure the lowest detec-
tion limits possible: Zn, 213.856 nm; Mn, 257.610 nm; Fe, 259.940 nm;
and Cu, 324.754 nm.Metal concentrations were obtained and averaged
from at least three enzyme preparations.

Steady-state Kinetic Studies—A series of thiol esters of glutathione
were used for the preliminary investigation of substrate preferences of
GLX2-5. The substrates used were S-D-lactoylglutathione (SLG, �240
3,100 M�1 cm�1), S-mandeloylglutathione (�263 4,200 M�1 cm�1),
S-acetylglutathione (�240 2,980 M�1 cm�1), S-acetoacetylglutathione
(�240 3,400 M�1 cm�1), S-formylglutathione (�240 3,300 M�1 cm�1),
S-glycolylglutathione (��240 3,260 M�1 cm�1), and S-lactonylgluta-
thione (��240 3,310M�1 cm�1).With the exception of SLG, all substrates
were synthesized as described elsewhere (47). Thiol ester hydrolysis was
monitored at 240 nm (except S-mandeloylglutathione, 263 nm) over
30 s at 25 °C. The concentrations of substrate and enzymeusedwere 200
and 10 �M, respectively.

The steady-state kinetic parameters of the GLX2-5-catalyzed hydrol-
ysis of S-D-lactoylglutathione were determined at 25 °C in 10 mM

MOPS, pH 7.2, using an Agilent 5483 Diode Array UV-visible spectro-
photometer. The rate of hydrolysis was monitored by measuring the
absorbance at 240 nm from 30 to 600 �M S-D-lactoylglutathione over a
30-s reaction period, and the data were analyzed as reported previously
(31).

EPR Spectroscopy—EPR spectra were recorded on a Bruker ESP-300E
spectrometer equipped with an Oxford Instruments ESR-900 helium
flow cryostat operating at 4.7 Kwith 2milliwatts of microwave power at
9.48 GHz and employing 10-G field modulation at 100 kHz. EPR sam-
ples contained 345 �M GLX2-5 in 10 mM MOPS, pH 7.2.

1H NMR Spectroscopy—NMR samples of GLX2-5 contained �10%
D2O for locking, and the concentration was 1.8 mM. The samples in
D2O were made by performing three or more dilution/concentration
cycles in a Centricon-10 to a final concentration of 1.6–1.8 mM. The
samples were then loaded into Wilmad 5-mm tubes for NMR. NMR
spectra were collected on a Bruker Avance 500 spectrometer operating
at 500.13 MHz, 298 K, and a magnetic field of 11.7 tesla, recycle delay
(AQ), 41 ms; sweep width, 400 ppm. Protein chemical shifts were cali-
brated by assigning the H2O signal the value of 4.70 ppm. A modified
presaturation pulse sequence (zgpr) was used to suppress the proton
signals originating from water molecules.

X-ray Crystallography—GLX2-5 was prepared and purified as
described under “Overexpression and Purification of Arabidopsis
GLX2-5.” Enzyme purity was ascertained by SDS-PAGE to be �95%,
and the concentration was 12 mg/ml (0.4 mM). The sample (2 ml) was
drop-frozen in liquid nitrogen and shipped on dry ice to the Center for
Eukaryotic Structural Genomics, University of Wisconsin, Madison.
The coordinates have been deposited in the Protein Data Bank (acces-
sion number 1XM8).

Molecular Weight Determination—Approximately 5 mg of GLX2-5
was mixed with 7 mg of ovalbumin, 10 mg of ribonuclease A, and 1 mg
of blue dextran and subjected to chromatography through a Sephadex
S200 column in 10mMMOPS, pH7.2, containing 0.15MNaCl. The flow
rate was 1 ml/min, and 2.0-ml fractions were collected. Samples con-
taining proteinwere identified bymonitoringA280 and by SDS-PAGE.A
sample of GLX2-5 was run as a control.

RESULTS

Overexpression, Purification, and Characterization of GLX2-5—Se-
quence comparisons of differentGLX2 isozymes inArabidopsis showed
that GLX2-5 has a relatively longN-terminal extension that is predicted
to target it for localization in the mitochondrion (23). To overexpress
GLX2-5 in E. coli, this N-terminal leader was removed during subclon-
ing to generate an N terminus of the protein, MQIELVP, which is sim-
ilar to that in cytosolic GLX2-2 (23). This modified gene was inserted
into pT7-7 to generate the overexpression plasmid glx2-5/pT7-7. This
construct was transformed into E. coli BL21(DE3) Rosetta cells, and
small scale growth cultures were used to optimize overexpression con-
ditions for GLX2-5.
During purification using Q-Sepharose chromatography, GLX2-5

eluted from the column at �125 mMNaCl, pH 7.2. SDS-PAGE showed
that the purified enzyme was �95% pure (data not shown). The eluted
protein was initially light blue in color; however, the coloration faded
within 15–30 min. The procedure described under “Experimental Pro-
cedures” resulted in the highest yield of soluble, overexpressed GLX2-5,
and resulted in �50 mg of purified GLX2-5 from a 1-liter of culture.
Metal analyses on GLX2-5, overexpressed in the presence of 250 �M

Fe(NH4)2(SO4)2 andZn(SO4)2 in the culturemedium, resulted in a puri-
fied recombinant enzyme that bound 1.04� 0.15 eq of iron, 1.31� 0.05
eq of Zn(II), 0.016 � 0.02 eq of manganese, and �0.001 eq of copper.
When GLX2-5 was overexpressed in media with no added iron or zinc,
the resulting enzyme bound 0.61 � 0.07 eq of iron, 0.58 � 0.15 eqof
Zn(II), and no detectable amounts of manganese or copper. Even
though this latter sample of GLX2-5 still bound approximately equal
amounts of Fe and Zn, the total metal content of the enzyme was
roughly only 1.0. Therefore, the overexpression and purification proce-
dure described under “Experimental Procedures” was used to prepare
GLX2-5 for all subsequent studies.
Most glyoxalase II enzymes showed a preference for S-D-lactoylglu-

tathione as the substrate, but as described above, SLG has not yet been
found in the mitochondrion. Therefore, seven related thioesters of glu-
tathione were used to determine the substrate preference of GLX2-5.
The substrates used were S-lactoylglutathione, S-mandeloylgluta-
thione, S-acetylglutathione, S-acetoacetylglutathione, S-formylgluta-
thione, S-glycolylglutathione, and S-lactonylglutathione. Initial rate
assays on these substrates showed that SLGwas the preferred substrate.
It showed an initial rate of hydrolysis of 2.96 � 10�6 M s�1. S-Aceto-
acetylglutathione (1.33� 10�6 M s�1) and S-glycolylglutathione (0.90�
10�6 M s�1) were hydrolyzed at about half the rate of SLG, whereas
S-mandeloylglutathione (0.35 � 10�6 M s�1), S-acetylglutathione
(0.32� 10�6 M s�1), and S-lactonylglutathione (0.29� 10�6 M s�1) were
hydrolyzed at rates about 10-fold lower than SLG. S-Formylglutathione
was not utilized as a substrate by GLX2-5.
Steady-state kinetic studies were then conducted on recombinant

GLX2-5 at 25 °C using SLG as the substrate. The enzyme exhibited a kcat
of 129 � 10 s�1 and a Km of 391 � 48 �M. These values are on the order
of those observed for Arabidopsis GLX2-2, suggesting that SLG is the
preferred substrate for GLX2-5.

Spectroscopic Studies on GLX2-5—The EPR spectrum of GLX2-5
(Fig. 2) is complex containing four distinct components. The two main
components of the spectrum are interpreted to result from a protein-
bound, magnetically isolated Fe(III) ion and an anti-ferromagnetically
spin-coupled Fe(II)-Fe(III) system, which are described in detail below.
In addition, the spectrum contains several minor components. Two of
the minor components are likely contaminating species; adventitiously
boundMn(II) gives rise to a six-line pattern centered at geff. � 2.0 and an
isotropic signal at geff. � 4.3 indicative of the presence of mononuclear
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Fe(III). These two components are commonly seen in the EPR spectra of
metalloenzymes and are present at low levels in the spectrum of
GLX2-5. Integration of the spectra of S �1⁄2 species is notoriously unre-
liable, especially when D is small and multiple Kramers’ doublets are
populated, some of which have resonances for which geff. tends to zero.
Nevertheless, in the present case the experimental spectrum, trace A,
can be compared with a simulated spectrum, trace D, that does not
contain these components. The six-line Mn(II) signal and the geff. � 4.3
isotropic signal are not major components of the spectrum of GLX2-5
and are likely irrelevant to the structure and function of the active site;
therefore, they were not studied further.
Themajor species in the EPR spectrum of GLX2-5 can be confidently

assigned to an unusual, protein-bound, magnetically isolated Fe(III) ion
on the basis of computer simulation. The experimental spectrum (Fig. 2,
trace A) shows a peak at 750 G (geff. � 9.01), a broad peak at 1410 G, a
derivative at 1595G (geff. � 4.25G), and a shoulder at 1815Gwith broad
underlying absorption. Considering the sensitivities of the intensities,
resonance positions, and line shapes of these features to not only the
zero-field splitting parameters themselves but, in particular, to the
effects of strains in g,D, and E, the theoretical spectrum shown as Fig. 1,
trace D, reproduces the features of the experimental spectrum remark-
ably well. The detailed parameters used for the simulation are given in
the legend to Fig. 1, but the salient points are as follows: (i) an isotropic
g� 2.0; (ii) amoderately rhombic E/D; (iii) an unusually low value forD,
barely larger than themicrowave quantum; and (iv) significant strains in
the zero-field splitting parameters. The simulations were extremely
sensitive toD, E/D, 	D, and 	E; the simulation rapidly becomes unrec-
ognizable as being related to the experimental spectrum upon changing
these values, and we estimate maximum errors of �15% for each of
these parameters. The main deficiencies of the simulation are the
imperfect reproduction of the sharp spike at geff. �4.2 and the underes-
timation of the intensity of the broad absorption from 1600 to 2200 G.
Both of these are likely the result of the overlapping isotropic geff. � 4.3
signal due to adventitious Fe(III), although it is possible that the strains
in the zero-field splitting parameters have a more complex distribution

than the simple one used in the present work. An additional minor
difference between the simulation and experimental spectra is the pres-
ence of sharp but very weak features at �3750 and �4500 G in the
simulation that are not observed experimentally; either strains in g or
relaxation effects may be responsible for the absence of these features in
the experimental spectrum.
The EPR spectrum of GLX2-5 contained, in addition to the protein-

bound Fe(III) that constituted the major species, a rhombic signal with
apparent S� 1⁄2 and geff. values of 1.93, 1.87, and 1.73 (Fig. 2, trace B). As
we are unaware of any mononuclear S � 1⁄2 ions that were likely to be
present in our preparation that would give rise to these parameters, we
were prompted to seek an alternative assignment for this signal. The
signal was well simulated, assuming a strongly anti-ferromagnetically
spin-coupled Fe(II)-Fe(III) system and assuming an isotropic gFe(III) �
2.0, a rhombic gFe(II) with g �2.0, and J ��h�. It should be pointed out
that there is no unique parameter set for generating this spectrum (or
others very similar to it), and the detailed parameters used to obtain Fig.
2, trace D, are given in the figure legend mainly for reference. However,
they do also serve to illustrate that the otherwise uninterpretable signal
at geff. � 1.93, 1.87, and 1.73 can be interpreted in terms of an Fe(II)-
Fe(III) mixed valence center using reasonable values for g, individual
zero-field splittings, and exchange coupling. Assuming that the signal is
indeed due to a di-iron center, and with caveats regarding the quantifi-
cation of the major S � 5/2 signal in mind, we estimated that the geff. �
1.93, 1.87, 1.73 signal accounts for up to a maximum of 20% of the total
protein-bound iron.
In order to probe further the active site structure of GLX2-5, a 1H

NMR spectrum of GLX2-5 was obtained (Fig. 3). There were at least
eight paramagnetically shifted resonances in-between 110 and �30
ppm. Previous studies have shown that the T1e of Fe(III) when part of a
Fe(III)Zn(II) center is too slow to observe paramagnetically shifted 1H
resonances (48, 49). Therefore, the peaks observed in Fig. 3 must be due
to ligands bound to a Fe(III)Fe(II) center in the sample., Peaks a, c, d, and
f of Fig. 3 integrate to two protons, whereas peaks b, g, and h integrate to
nearly 1 proton each. Peaks a and d of Fig. 3 are solvent-exchangeable,
and based on their resonance positions and line widths, these peaks can
be assigned to N-H protons on Fe(III)- and Fe(II)-bound histidines,
respectively (48, 50, 51). This result suggests that there are at least four
histidines bound to the Fe(III)Fe(II) center in this sample. If GLX2-5 is
similar to human GLX2-2 then there should be five histidines bound to
the metal center. It is possible that a fifth solvent-exchangeable NH
resonance is not observed due to fast exchange with bulk solvent (49,

FIGURE 2. EPR spectrum of GLX2-5. Trace A shows the spectrum of GLX2-5 recorded at
4.7 K. The inset shows an expanded view of the g �1.9 region of the spectrum (trace B)
and a theoretical spectrum (trace C). The theoretical spectrum was generated using the
spin Hamiltonian H � �g1.B.S1 
 S1.D1.S1 
 �g2.B.S2 
 S2.D2.S2 
 J.S1.S2, where S1 � 5/2;
g1(iso) � 2.0; D1 � 3 cm�1; E1 � 0; S2 � 1; g2(x,y,z) � 2.093, 2.192, and 2.322; D2 � 10 cm�1;
E � 0; and J � 50 cm�1. This scheme represents a strongly anti-ferromagnetically cou-
pled Fe(III)-Fe(II) center. Trace D shows a composite simulation of the experimental EPR
spectrum. The simulation has two components, one of which is that shown as trace C,
and another, the major component, corresponds to an isolated Fe(III) ion with H � �g.B.S

 S.D.S, where g(iso) � 2.0; S � 5/2; D � 0.45 cm�1; E � 0.0855 cm�1 (E/D � 0.19); 	D �
0.20 cm�1; and 	E � 0.057 cm�1. An additional component with an isotropic g(eff) � 4.3
is present but was not included in the simulation.

FIGURE 3. NMR spectrum of 1. 6 mM GLX2-5. NMR spectra were collected on a Bruker
Avance 500 spectrometer operating at 500.13 MHz, 298 K, and a magnetic field of 11.7
tesla, recycle delay (AQ), 41 ms; sweep width, 400 ppm. Protein chemical shifts were
calibrated by assigning the H2O signal the value of 4.70 ppm. A modified presaturation
pulse sequence (zgpr) was used to suppress the proton signals originating from water
molecules. *, solvent-exchangeable peaks.
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52). The solvent-exchangeable, upfield shifted peak h is very unusual
because very few metal-binding amino acid ligands are solvent-ex-
changeable, and none are known to yield upfield shifted peaks. An
upfield shift is suggestive of a �, rather than �, delocalization mecha-
nism (50). A similarly shifted, solvent-exchangeable peak was observed
in Fe(III)Fe(II)-containing uteroferrin; however, the assignment of this
peak has not been made (50). It has been suggested that this peak arises
from a backbone NH in close proximity to the metal center (53).
Although unambiguous assignments of the remaining peaks are not
possible, it is likely that peaks b and c are due to either meta protons
(�CH) on Fe(II)-bound histidines or to�-CH2 protons onmetal-bound
histidines (49, 50). Ortho protons onmetal-bound histidines are usually
too broad to detect (50). Peaks f and g are probably due to �-CH2
protons on bound Asp/Glu ligands (49, 50). Therefore, the NMR spec-

trum of GLX2-5 confirmed the presence of an Fe(III)Fe(II) center in the
enzyme.

Crystallographic Studies on GLX2-5—Alignment of GLX2-5 with
humanGLX2 (Fig. 1) indicated that the proteins sharemodest sequence
identity (37% identical). The largest blocks of identical residues are pres-
ent around residues identified as metal-binding ligands in the human
enzyme. Other regions (amino acids 69–132 and 187–257) demon-
strated less sequence conservation. Furthermore, if GLX2-5 contains a
Fe(III)Zn(II) structure as we predict, then the geometries of the metal
centers of the two enzymes should differ. Therefore, the x-ray crystal
structure of GLX2-5 at pH 4.5 was solved to 1.74 Å resolution and is
shown in Fig. 4 (TABLES ONE and TWO). The enzyme crystallized as
a dimer with monomers of 254 amino acids, and each monomer has an
���� motif, which is found in all enzymes containing a metallo-�-
lactamase fold (44). The interface between the two monomers contains
Lys-10, His-56, Tyr-57, Lys-140, Phe-142, Glu-143, Lys-177, Lys-203,
Asp-253, and Phe-254 from both subunits. The dimer is held together
by a number of electrostatic interactions such as Lys-10 forming con-
tacts with Asp-11 and Glu-170, Asp-253 forming a contact with His-56,
and Phe-254 hydrogen bonding to Tyr-57. Onemolecule of acetate was
found in each subunit andwas located near (distances�3.0 Å) Arg-248,
Lys-251, Lys-140, and Ser-137. One molecule of PEG was found in sub-
unit A and was shown to be positioned near Lys-202. The C terminus of
each monomer lies in the dimer interface, which is solvent-accessible,
whereas the N termini are solvent-exposable.
Eachmonomer binds two heavy atoms, and themetal ions are bound

near the surfaces of themonomers in-between the�-sheets of the����

motif. Because EPR studies predicted that a Fe(III)Zn(II) center is pre-
dominant in recombinant GLX2-5, this center is shown in Figs. 4 and 5.
However, we cannot completely rule out the possibility of a dinuclear Fe
or Zn center. The metal centers face one another with the metal ion in

TABLE ONE

Comparisons of the active sites of human GLX2-2 and A. thaliana GLX2-5
Structures for humanGLX2-2 (ProteinData Bank number 1QH3) andA. thalianaGLX2-5 (ProteinData Bank number 1XM8)were analyzedwith Raswin version
2.7.2.1.

Metala Enzyme Residue Atom Distance Bond
angle (o)b

Second sphere
ligands

Å

M1 GLX2-5 His-54 N-�2 2.1 119 Thr-53
GLX2-2 His-54 N-�2 2.3 104

M1 GLX2-5 His-56 N-�1 2.1 104
GLX2-2 His-56 N-�1 2.3 95 Glu-146 via water

M1 GLX2-5 His-112 N-�2 2.1 129 Lys-140 carbonyl
GLX2-2 His-110 N-�2 2.3 161

M1 GLX2-5 Bridging H2O/OH� 2.0
GLX2-2 2.1

M1 GLX2-5 None
GLX2-2 Asp-134 O-�2 2.2 78 Asp-134 carbonyl

M2 GLX2-5 Asp-58 O-�2 2.0 90
GLX2-2 Asp-58 O-�2 2.3 87

M2 GLX2-5 His-59 N-�2 1.9 107 Asp-29
GLX2-2 His-59 N-�2 2.2 101

M2 GLX2-5 Asp-131 O-�2 2.0 81
GLX2-2 Asp-134 O-�2 2.2 78

M2 GLX2-5 His-169 N-�2 1.9 141 Asp-11
GLX2-2 His-173 N-�2 2.1 151

M2 GLX2-5 Bridging H2O/OH� 2.1
GLX2-2 2.1

a M1 is Zn(II) for both enzymes; M2 is Zn(II) for human GLX2-2 and Fe for A. thaliana GLX2-5.
b Bond angle is defined as the bridging H2O/OH� - metal-ligating atom of ligand.

FIGURE 4. Ribbon structure of GLX2-5 from A. thaliana. The coordinates have been
deposited in the Protein Data Bank (accession number 1XM8). Figure was rendered using
Raswin Molecular Graphics, Windows version 2.7.2.1.1.
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site 1 of each subunit being 17.8 Å apart (Fig. 4). The metal ions in each
subunit are separated by 3.3 (4) Å (Fig. 5). The metal ion in site 1 is
coordinated tetrahedrally by His-54, His-56, His-112, and a bridging
water/hydroxide (TABLE ONE). The metal ion in site 2 is coordinated
in a trigonal bipyramid geometry by Asp-58, His-59, Asp-131, His-169,
and a bridging water/hydroxide, with Asp-131 and Asp-58 in the apical
positions of the trigonal bipyramid. One oxygen (O-�1) of Asp-58
appears to be in position (2.78 Å from bridging hydroxide oxygen) to
form a hydrogen bond to the bridging water/hydroxide. A similar role
was predicted forAsp-120 inmetallo-�-lactamase L1 (2.83Å fromO-�1
to hydroxide oxygen) (43).
The crystal structure of human GLX2 complexed with glutathione

and S-hydroxybromophenylcarbamoyl glutathione showed that Arg-
249, Lys-252, Lys-143, Tyr-175, and Tyr-145 are within 13 Å of the
metal ion in site 1 and interact with glutathione and S-hydroxybromo-
phenylcarbamoyl glutathione. Alignment of the amino acid sequences
of human GLX2 and GLX2-5 (Fig. 1) shows that all of the glutathione
and inhibitor-binding residues of human GLX2 are conserved in
GLX2-5 except Tyr-145, which is replaced by a Phe in GLX2-5. Phe-
142, Tyr-171, Arg-248, Lys-140, and Lys-251 are all within 13 Å of the
metal ion in site 1 of GLX2-5. Therefore, we predicted that these ligands
are involved in substrate binding.
One common structural feature of enzymes that have a metallo-�-

lactamase fold is an extensive H-bonding network around the metal-
binding ligands (TABLEONE). In particular, the ligands that coordinate
the metal ion in site 2 typically form hydrogen bonds to two Asp resi-
dues. InGLX2-5, His-169 (N-�1) forms anH-bondwithO-�1 of Asp-11

(2.86 Å), and Asp-11 (O-�2) forms a hydrogen bond with the side chain
of Lys-10. The O-�2 oxygen of Asp-11 is also positioned to hydrogen-
bond to a solvent molecule, which H-bonds to a second solvent mole-
cule that hydrogen-bonds to Asp-11 (O-�2) in molecule B of the struc-
ture. TheN-�1 nitrogen ofHis-59 forms a hydrogen bond to theO-�2 of
Asp-29 (2.819Å), whereas theO-�1 oxygen of Asp-29 forms a hydrogen
bond to the backbone amine of Thr-53. The metal-binding ligands in
site 2 also form hydrogen bonds with amino acids near the active site:
N-�1 ofHis-54 hydrogen bonds to theO-	1 of Thr-53, and the carbonyl
oxygen of Lys1–40 (which corresponds to Lys-143 in human GLX2)
forms a hydrogen bond with the N-�1 of His-112. Therefore, a similar
hydrogen bonding network is conserved in GLX2-5.

GLX2-5 Exists as aMonomer in Solution—In contrast to the situation
in the crystal structure, GLX2-5 was found to exist as a monomer when
a sample of recombinant protein was subjected to gel filtration chroma-
tography (Fig. 6). GLX2-5 was found to elute between ovalbumin (44
kDa) and ribonuclease A (13 kDa) during gel filtration chromatography.
The molecular mass of the recombinant GLX2-5 monomer is 28.2 kDa,
whereas a dimer would be expected to run as a 56-kDa protein. It is
possible that weak interactions between the GLX2-5 monomers result
in some dimerization of the enzyme in the cell that are disrupted by the
ionic strength of the buffer during gel filtration. However, it is more
likely that the dimers observed in the crystal structure of both GLX2-5
and human GLX2 are likely the result of the conditions used for
crystallization.

DISCUSSION

Mitochondrial GLX2-5 from A. thaliana was successfully overex-
pressed and purified with single step chromatography. The resulting
protein was shown to bind significant amounts of both Fe and Zn(II),
but unlikeArabidopsisGLX2-2 (40, 41), very littleMnwas bound to the
enzyme. The complex EPR spectra of GLX2-5 are very reminiscent of
those of Arabidopsis GLX2-2 (40, 41), which contain overlapping sig-
nals that have been assigned to Fe(III)Zn(II), anti-ferromagnetically
coupled Fe(III)Fe(II), and ferromagnetically coupledMn(II)Mn(II) cen-
ters. However, there are no signals that could be assigned to a ferromag-
netically coupled Mn(II)Mn(II) center in the spectrum of GLX2-5, and
the relatively weak, multiline signal at g �2 is probably due to adventi-
tiously bound,mononuclearMn(II). The EPR spectrumofGLX2-5 does
suggest the presence of a magnetically uncoupled Fe(III) center that,
given themetal analyses and precedents in the literature (45, 54, 55), can
be assigned to a Fe(III)Zn(II) center. This center is the predominant one

TABLE TWO

Crystallographic and refinement statistics
Additional details about crystallographic and refinement statistics can be
found on the Protein Data Bank, Research Collaboratory for Structural Bioin-
formatics website (Protein Data Bank number 1XM8).

Protein Data Bank number 1XM8

Space group P1 21 1
Resolution range (Å) 33.71–1.74
Unique reflections 51,949
Rmerge (%)a 7.9 (54.5)
�I/�(I)� (%)a 21.2 (4.3)
Completeness (%)a 95.4 (97.4)
R/Rfree (%) 17.9 / 28.4
Root mean square deviation bond length (Å) 0.020
Root mean square deviation bond angle (°) 1.7
No. water molecules 547
Method to solve structure SADb

a Values for the highest resolution shell are in parentheses.
b SAD is single wavelength anomalous diffraction.

FIGURE 5. Active sites of (left) GLX2-2 from human and (right) GLX2-5 from A. thali-
ana. Figure was rendered using Raswin Molecular Graphics, Windows version 2.7.2.1.1.

FIGURE 6. Elution profile from gel filtration column. Approximately 5 mg of GLX2-5, 7
mg of ovalbumin, 10 mg of ribonuclease A, and 1 mg of blue dextran were separated on
a Sephadex S200 column. Samples containing protein were identified by monitoring
A280 and by SDS-PAGE.
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in GLX2-5 accounting for nearly 70% of the EPR-active Fe(III) in the
spectrum. There is also a significant amount of an anti-ferromagneti-
cally coupled Fe(III)Fe(II) center, which accounts for nearly 30% of the
Fe in the sample. Because there are roughly equal amounts of Fe and Zn
in GLX2-5, there must also be a significant amount of dinuclear Zn(II)-
containing enzyme in this sample. Therefore, like recombinant GLX2-2
(40, 41), recombinant mitochondrial GLX2-5 contains a mixture of
metal centers.
The 1HNMR spectrum of GLX2-5 arises from protons in close prox-

imity to the Fe(III)Fe(II) center in the sample. The crystal structure of
GLX2-5 (Fig. 5) shows that there are five bound histidines to the metal
center; however, theNMR spectra only revealed four solvent-exchange-
able NH resonances. The crystal structure (Fig. 5) shows that the NH
group on His-56 is pointed directly into the media, and this positioning
provides an excellent explanation of why the fifth solvent-exchangeable
NH resonance is not observed. His-56 is also the only histidine that is
bound via the �N; therefore, there would only be onemeta-CH proton
expected in the NMR spectrum. Previous model studies by Que and
co-workers (50) revealed that meta protons on imidazoles/histidines
bound to Fe(III) exhibit resonance lines from 70 to 90 ppm, whereas
those bound to Fe(II) exhibit resonances from 30 to 60 ppm. Because
there are no resonances in the 70–90-ppm region (Fig. 3) that could be
assigned to a meta proton, this result indicates that His-56 is coordi-
nated to an Fe(II). Because it is most likely that Zn(II) will replace Fe(II)
in the Fe(III)Zn(II) analog of GLX2-5, this result suggests that the metal
bound in the site containing His-56 in Fig. 5 is Zn(II).
To probe further the structure of GLX2-5, the enzymewas sent to the

Center for Eukaryotic Structural Genomics for crystal structure deter-
mination. Even though our spectroscopic results indicate that the
GLX2-5 sample is heterogeneous in terms of metal centers, this sample
yielded suitable crystals for structure determination. Although similar
in many ways, the crystal structures of human GLX2 and GLX2-5 show
some significant structural differences between the two enzymes. Both
enzymes crystallized as dimers; however, the dimer interface in human
GLX2 ismade up entirely of�-helices in theC termini of themonomers.
The metal centers in human GLX2 face each other but are separated by
�36 Å. Conversely, the dimer interface in GLX2-5 is extensive with
multiple interactions between amino acids in each monomer and a
Zn(II)-Zn(II) distance of 18 Å (Fig. 4).
Perhaps more interesting are our results concerning the metal cen-

ters in the two enzymes, which also show several differences. The crystal
structure of human GLX2 showed two Zn(II) ions separated by 3.4–3.5
Å, and each Zn(II) was coordinated by six ligands in an octahedral
geometry (42). The metal ions in GLX2-5 are coordinated by the same
amino acid ligands that coordinate the Zn(II) ions in human GLX2.
However, there is no evidence for additional solvent molecules coordi-
nated to the metal ions in GLX2-5, and the metal ions have trigonal
bipyramidal and tetrahedral geometries. The Zn(II) ions in human
GLX2 are bridged by a hydroxide and by O-�2 of Asp-134 (42), whereas
there is no evidence of a bridging Asp (Asp-131) in GLX2-5. Despite
missing the bridging Asp, the M–M bond distance is 0.1 Å shorter in
GLX2-5 than in the human enzyme (42). In addition, the metal-ligand
distances are shorter inGLX2-5 than in humanGLX2-2 (TABLEONE).
There are also large differences in the bond angles (bridging hydroxide/
water-metal-atom in ligand) in the active sites of the two enzymes
(TABLE ONE).
Despite the differences in metal ions and their geometry and in some

first sphere ligands in humanGLX2 andGLX2-5, the hydrogen bonding
network around themetal centers is remarkably conserved. Asp-11 and
Asp-29 form H-bonds to the metal-binding histidines in the Zn2 site of

human GLX2 (42), and these same residues form hydrogen bonds with
metal-binding ligands of site 2 in GLX2-5. The different metal contents
of the two enzymes cannot be directly attributed to different metal
ligands, but may be related to different second sphere interactions. Two
of the second sphere ligands in human GLX2 (Thr-53 and Lys-143
(Lys-140 in GLX2-5)) form interactions with His residues of site 1 in
GLX2-5. However, two key second sphere ligand interactions observed
in the structure of humanGLX2 aremissing inGLX2-5.Glu-146 (incor-
rectly labeled Asp-146 in Table 1 of Ref. 42) was shown to interact with
His-56, via a water molecule, in the structure of human GLX2. There is
no evidence of a water molecule in the structure of GLX2-5 between
His-56 andGlu-143, and these two residues are 5.2Å apart and probably
do not interact. The structure of human GLX2 also suggested an inter-
action of the carbonyl ofAsp-134with the side chain ofAsp134 (42); this
interaction is not observed in GLX2-5. At this time it is not clear if these
differences in second sphere influence the metal binding properties of
the enzyme or if they result from the different geometries of the metal
centers in GLX2-5.
Results presented in this study represent the first detailed structural

characterization of a mitochondrial glyoxalase 2 isozyme from any
source. Our results indicate that although the Arabidopsis GLX2
isozymes can utilize a number of different metal centers, it appears that
a Fe(III)Zn(II) center is the predominant form of GLX2-5. Although
further studies are required on other GLX2 and �-lactamase fold-con-
taining enzymes to better understand factors that control metal speci-
ficity in these enzymes, our results suggest that subtle alterations in
second sphere ligands may directly affect metal preference and geome-
try in GLX2 enzymes. Differences in second sphere ligands may explain
why human GLX2 appears to have a preference for a dinuclear Zn site,
whereas the majority of recombinant Arabidopsis GLX2-5 contains a
Fe(III)Zn(II) site. What role, if any, differences in metal center prefer-
ence and geometry play in the catalytic mechanism remains to be
determined.
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